1,226 research outputs found

    On designing observers for time-delay systems with nonlinear disturbances

    Get PDF
    This is the post print version of the article. The official published version can be obtained from the link below - Copyright 2002 Taylor & Francis LtdIn this paper, the observer design problem is studied for a class of time-delay nonlinear systems. The system under consideration is subject to delayed state and non-linear disturbances. The time-delay is allowed to be time-varying, and the non-linearities are assumed to satisfy global Lipschitz conditions. The problem addressed is the design of state observers such that, for the admissible time-delay as well as non-linear disturbances, the dynamics of the observation error is globally exponentially stable. An effective algebraic matrix inequality approach is developed to solve the non-linear observer design problem. Specifically, some conditions for the existence of the desired observers are derived, and an explicit expression of desired observers is given in terms of some free parameters. A simulation example is included to illustrate the practical applicability of the proposed theory.The work of Z. Wang was supported in part by the University of Kaiserslautern of Germany and the Alexander von Humboldt Foundation of Germany

    Design of exponential state estimators for neural networks with mixed time delays

    Get PDF
    This is the post print version of the article. The official published version can be obtained from the link below - Copyright 2007 Elsevier Ltd.In this Letter, the state estimation problem is dealt with for a class of recurrent neural networks (RNNs) with mixed discrete and distributed delays. The activation functions are assumed to be neither monotonic, nor differentiable, nor bounded. We aim at designing a state estimator to estimate the neuron states, through available output measurements, such that the dynamics of the estimation error is globally exponentially stable in the presence of mixed time delays. By using the Laypunov–Krasovskii functional, a linear matrix inequality (LMI) approach is developed to establish sufficient conditions to guarantee the existence of the state estimators. We show that both the existence conditions and the explicit expression of the desired estimator can be characterized in terms of the solution to an LMI. A simulation example is exploited to show the usefulness of the derived LMI-based stability conditions.This work was supported in part by the Engineering and Physical Sciences Research Council (EPSRC) of the UK under Grant GR/S27658/01, the Nuffield Foundation of the UK under Grant NAL/00630/G, the Alexander von Humboldt Foundation of Germany, the Natural Science Foundation of Jiangsu Education Committee of China under Grants 05KJB110154 and BK2006064, and the National Natural Science Foundation of China under Grants 10471119 and 10671172

    Exponential stability of delayed recurrent neural networks with Markovian jumping parameters

    Get PDF
    This is the post print version of the article. The official published version can be obtained from the link below - Copyright 2006 Elsevier Ltd.In this Letter, the global exponential stability analysis problem is considered for a class of recurrent neural networks (RNNs) with time delays and Markovian jumping parameters. The jumping parameters considered here are generated from a continuous-time discrete-state homogeneous Markov process, which are governed by a Markov process with discrete and finite state space. The purpose of the problem addressed is to derive some easy-to-test conditions such that the dynamics of the neural network is stochastically exponentially stable in the mean square, independent of the time delay. By employing a new Lyapunov–Krasovskii functional, a linear matrix inequality (LMI) approach is developed to establish the desired sufficient conditions, and therefore the global exponential stability in the mean square for the delayed RNNs can be easily checked by utilizing the numerically efficient Matlab LMI toolbox, and no tuning of parameters is required. A numerical example is exploited to show the usefulness of the derived LMI-based stability conditions.This work was supported in part by the Engineering and Physical Sciences Research Council (EPSRC) of the UK under Grant GR/S27658/01, the Nuffield Foundation of the UK under Grant NAL/00630/G, and the Alexander von Humboldt Foundation of Germany

    Robust switched controller design for linear continuous-time systems

    Get PDF
    In this paper we study a novel approach to the design of a robust switched controller for continuous-time systems described by a novel robust plant model using quadratic stability and multi parameter dependent quadratic stability approaches. In the proposed design procedure with an output feedback a novel quadratic cost function is proposed which allows to obtain different performance dependence on the working points. Finally a numerical examples are investigated

    Global exponential stability of generalized recurrent neural networks with discrete and distributed delays

    Get PDF
    This is the post print version of the article. The official published version can be obtained from the link below - Copyright 2006 Elsevier Ltd.This paper is concerned with analysis problem for the global exponential stability of a class of recurrent neural networks (RNNs) with mixed discrete and distributed delays. We first prove the existence and uniqueness of the equilibrium point under mild conditions, assuming neither differentiability nor strict monotonicity for the activation function. Then, by employing a new Lyapunov–Krasovskii functional, a linear matrix inequality (LMI) approach is developed to establish sufficient conditions for the RNNs to be globally exponentially stable. Therefore, the global exponential stability of the delayed RNNs can be easily checked by utilizing the numerically efficient Matlab LMI toolbox, and no tuning of parameters is required. A simulation example is exploited to show the usefulness of the derived LMI-based stability conditions.This work was supported in part by the Engineering and Physical Sciences Research Council (EPSRC) of the UK under Grant GR/S27658/01, the Nuffield Foundation of the UK under Grant NAL/00630/G, and the Alexander von Humboldt Foundation of Germany

    H∞ and L2–L∞ filtering for two-dimensional linear parameter-varying systems

    Get PDF
    This is the post print version of the article. The official published version can be obtained from the link below - Copyright 2007 Wiley-BlackwellIn this paper, the H∞ and l2–l∞ filtering problem is investigated for two-dimensional (2-D) discrete-time linear parameter-varying (LPV) systems. Based on the well-known Fornasini–Marchesini local state-space (FMLSS) model, the mathematical model of 2-D systems under consideration is established by incorporating the parameter-varying phenomenon. The purpose of the problem addressed is to design full-order H∞ and l2–l∞ filters such that the filtering error dynamics is asymptotic stable and the prescribed noise attenuation levels in H∞ and l2–l∞ senses can be achieved, respectively. Sufficient conditions are derived for existence of such filters in terms of parameterized linear matrix inequalities (PLMIs), and the corresponding filter synthesis problem is then transformed into a convex optimization problem that can be efficiently solved by using standard software packages. A simulation example is exploited to demonstrate the usefulness and effectiveness of the proposed design method

    Additive-Decomposition-Based Output Feedback Tracking Control for Systems with Measurable Nonlinearities and Unknown Disturbances

    Full text link
    In this paper, a new control scheme, called as additive-decomposition-based tracking control, is proposed to solve the output feedback tracking problem for a class of systems with measurable nonlinearities and unknown disturbances. By the additive decomposition, the output feedback tracking task for the considered nonlinear system is decomposed into three independent subtasks: a pure tracking subtask for a linear time invariant (LTI) system, a pure rejection subtask for another LTI system and a stabilization subtask for a nonlinear system. By benefiting from the decomposition, the proposed additive-decomposition-based tracking control scheme i) can give a potential way to avoid conflict among tracking performance, rejection performance and robustness, and ii) can mix both design in time domain and frequency domain for one controller design. To demonstrate the effectiveness, the output feedback tracking problem for a single-link robot arm subject to a sinusoidal or a general disturbance is solved respectively, where the transfer function method for tracking and rejection and backstepping method for stabilization are applied together to the design.Comment: 23 pages, 6 figure

    Robust stability for stochastic Hopfield neural networks with time delays

    Get PDF
    This is the post print version of the article. The official published version can be obtained from the link below - Copyright 2006 Elsevier Ltd.In this paper, the asymptotic stability analysis problem is considered for a class of uncertain stochastic neural networks with time delays and parameter uncertainties. The delays are time-invariant, and the uncertainties are norm-bounded that enter into all the network parameters. The aim of this paper is to establish easily verifiable conditions under which the delayed neural network is robustly asymptotically stable in the mean square for all admissible parameter uncertainties. By employing a Lyapunov–Krasovskii functional and conducting the stochastic analysis, a linear matrix inequality (LMI) approach is developed to derive the stability criteria. The proposed criteria can be checked readily by using some standard numerical packages, and no tuning of parameters is required. Examples are provided to demonstrate the effectiveness and applicability of the proposed criteria.This work was supported in part by the Engineering and Physical Sciences Research Council (EPSRC) of the UK under Grant GR/S27658/01, the Nuffield Foundation of the UK under Grant NAL/00630/G, and the Alexander von Humboldt Foundation of German

    Algorithms for worst case identification in H-infinity and the nu-gap metric

    Get PDF
    This paper considers two robustly convergent algorithms for the identification of a linear system from (possibly) noisy frequency response data. Both algorithms are based on the same principle; obtaining a good worst case fit to the data under a smoothness constraint on the obtained model. However they differ in their notions of distance and smoothness. The first algorithm yields an FIR model of a stable system and is optimal, in a certain sense for a finite model order. The second algorithm may be used for modelling unstable plants and yields a real rational approximation in the -gap. Given a model and a controller stabilising the true plant, a procedure for winding number correction is also suggested

    Robust H∞ control for a class of nonlinear discrete time-delay stochastic systems with missing measurements

    Get PDF
    This is the post print version of the article. The official published version can be obtained from the link - Copyright 2009 Elsevier LtdThis paper is concerned with the problem of robust H∞ output feedback control for a class of uncertain discrete-time delayed nonlinear stochastic systems with missing measurements. The parameter uncertainties enter into all the system matrices, the time-varying delay is unknown with given low and upper bounds, the nonlinearities satisfy the sector conditions, and the missing measurements are described by a binary switching sequence that obeys a conditional probability distribution. The problem addressed is the design of an output feedback controller such that, for all admissible uncertainties, the resulting closed-loop system is exponentially stable in the mean square for the zero disturbance input and also achieves a prescribed H∞ performance level. By using the Lyapunov method and stochastic analysis techniques, sufficient conditions are first derived to guarantee the existence of the desired controllers, and then the controller parameters are characterized in terms of linear matrix inequalities (LMIs). A numerical example is exploited to show the usefulness of the results obtained.This paper was not presented at any IFAC meeting. This paper was recommended for publication in revised form by Associate Editor Dragan Nešic under the direction of Editor Hassan K. Khalil. This work was supported in part by the Engineering and Physical Sciences Research Council (EPSRC) of the U.K. under Grant GR/S27658/01, the City University of Hong Kong under Grant 7001992, the Royal Society of the U.K. under an International Joint Project, the Natural Science Foundation of Jiangsu Province of China under Grant BK2007075, the National Natural Science Foundation of China under Grant 60774073, and the Alexander von Humboldt Foundation of Germany
    corecore