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Robust Stability for Stochastic Hopfield

Neural Networks with Time Delays
Zidong Wang, Huisheng Shu, Jian’an Fang, and Xiaohui Liu

Abstract

In this paper, the asymptotic stability analysis problem is considered for a class of uncertain stochastic neural

networks with time delays and parameter uncertainties. The delays are time-invariant, and the uncertainties are norm-

bounded that enter into all the network parameters. The aim of this paper is to establish easily verifiable conditions

under which the delayed neural network is robustly asymptotically stable in the mean square for all admissible parameter

uncertainties. By employing a Lyapunov-Krasovskii functional and conducting the stochastic analysis, a linear matrix

inequality (LMI) approach is developed to derive the stability criteria. The proposed criteria can be checked readily by

using some standard numerical packages, and no tuning of parameters is required. Examples are provided to demonstrate

the effectiveness and applicability of the proposed criteria.

Keywords

Hopfield neural networks; Uncertain systems; Stochastic systems; Time delays; Lyapunov-Krasovskii functional;

Global asymptotic stability; Linear matrix inequality.

I. Introduction

Since the seminal work for Hopfield neural networks in [16], [17], the past two decades have witnessed the

successful applications of Hopfield neural networks in many areas such as combinatorial optimization, signal

processing and pattern recognition, see e.g. [21], [22], [30]. Recently, it has been realized that the axonal

signal transmission delays often occur in various neural networks, and may cause undesirable dynamic network

behaviors such as oscillation and instability. Consequently, the stability analysis problems for delayed neural

networks have gained considerable research attention. Up to now, a great deal of results have been reported

in the literature, see e.g. [1], [6], [7], [9], [10], [20], [27] and references therein, where the delay type can be

constant, time-varying, or distributed, and the stability criteria can be delay-dependent or delay-independent.

In real nervous systems, the synaptic transmission is a noisy process brought on by random fluctuations from

the release of neurotransmitters and other probabilistic causes. It has also been known that a neural network

could be stabilized or destabilized by certain stochastic inputs [3]. Hence, the stability analysis problem for

stochastic neural networks becomes increasingly significant, and some results related to this problem have

recently been published, see e.g. [3], [18], [19], [24]. On the other hand, the connection weights of the neurons

depend on certain resistance and capacitance values that include uncertainties (modeling errors). When
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modeling neural networks, the parameter uncertainties (also called variations or fluctuations) should be taken

into account, and therefore the problem of robust stability analysis for neural networks emerges as a research

topic of primary importance, see e.g. [2], [8], [11], [29]. It should be pointed out that, in most existing

literature, the stochastic analysis issue and stability robustness issue have been treated separately. To the

best of the authors’ knowledge, the robust stability analysis problem for stochastic Hopfield neural networks

with time delays has not been fully investigated, and remains important and challenging.

In this paper, we deal with the global robust stability analysis problem for a class of stochastic Hopfield

neural networks with time-delays. By utilizing a Lyapunov-Krasovskii functional and using the well-known S-

procedure, we convert the addressed stability analysis problem into a convex optimization problem. Different

from the commonly used matrix norm theories (such as the M -matrix method), a unified linear matrix

inequality (LMI) approach is developed to establish sufficient conditions for the neural networks to be robustly,

globally, asymptotically stable. Note that LMIs can be easily solved by using the Matlab LMI toolbox, and

no tuning of parameters is required [4]. Two numerical examples are provided to show the usefulness of the

proposed global stability condition.

Notations: The notations are quite standard. Throughout this paper, R
n and R

n×m denote, respectively,

the n-dimensional Euclidean space and the set of all n×m real matrices. The superscript “T” denotes matrix

transposition and the notation X ≥ Y (respectively, X > Y ) where X and Y are symmetric matrices, means

that X − Y is positive semidefinite (respectively, positive definite). In is the n× n identity matrix. | · | is the

Euclidean norm in R
n. If A is a matrix, denote by ‖A‖ its operator norm, i.e., ‖A‖ = sup{|Ax| : |x| = 1} =

√

λmax(AT A) where λmax(·) (respectively, λmin(·)) means the largest (respectively, smallest) eigenvalue of A.

l2[0,∞] is the space of square integrable vector. Moreover, let (Ω,F , {Ft}t≥0, P ) be a complete probability

space with a filtration {Ft}t≥0 satisfying the usual conditions (i.e., the filtration contains all P -null sets and is

right continuous). Denote by L
p
F0

([−h, 0]; Rn) the family of all F0-measurable C([−h, 0]; Rn)-valued random

variables ξ = {ξ(θ) : −h ≤ θ ≤ 0} such that sup−h≤θ≤0 E|ξ(θ)|p < ∞ where E{·} stands for the mathematical

expectation operator with respect to the given probability measure P . The shorthand diag{M1,M2, · · · ,MN}

denotes a block diagonal matrix with diagonal blocks being the matrices M1, M2, · · · , MN . Sometimes, the

arguments of a function or a matrix will be omitted in the analysis when no confusion can arise.

II. Problem formulation

In the past few years, the dynamical behavior (especially the stability) of the Hopfield neural networks with

time delays have been intensively studied, and many stability criteria have been proposed, see e.g. [2], [7], [8],

[9], [10], [27], [31]. The Hopfield neural network with time delays can be described by the following model:

u̇(t) = −Au(t) + Wg(u(t − h)) + V (1)

where u(t) = [u1(t), u2(t), · · · , un(t)]T ∈ R
n is the state vector associated with the n neurons, the diagonal

matrix A = diag(a1, a2, · · · , an) has positive entries ai > 0. The matrices W = (wij)n×n is the connection

weight matrix. g(u(t)) = [g1(u1(t)), g2(u2(t)), · · · , gn(un(t))]T denotes the neuron activation function with

g(0) = 0, and V = [V1, V2, · · · , Vn]T is a constant external input vector. The scalar h > 0 denotes the discrete

time delay.

The following assumption is made on the neuron activation function.

Assumption 1: The neuron activation function g(·) in (1) satisfies the following Lipschitz condition

|g(x) − g(y)| ≤ |G(x − y)|, ∀x, y ∈ R (2)
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where G ∈ R
n×n is a known constant matrix.

Remark 1: The activation functions are typically assumed to be continuous, differentiable, monotonically

increasing and bounded, such as the functions of sigmoid type. These conditions are no longer needed in this

paper. Instead, only the Lipschitz condition is imposed in Assumption 1. Note that the type of activation

functions in (2) have already been used in numerous papers, see [9] and references therein.

Let u∗ be the equilibrium point of (1). For the purpose of simplicity, we can shift the intended equilibrium

u∗ to the origin by letting x = u − u∗, and then the system (1) can be transformed into:

ẋ(t) = −Ax(t) + Wl(x(t − h)), (3)

where x(t) = [x1(t), x2(t), · · · , xn(t)]T ∈ R
n is the state vector of the transformed system. It follows from (2)

that the transformed neuron activation function l(x) = g(x + u∗) − g(u∗) satisfies

|l(x)| ≤ |Gx|, (4)

where G ∈ R
n×n is specified in (2).

As mentioned previously, it is often the case in practice that the network parameters may contain uncer-

tainties due to modeling errors, and the neural network is disturbed by environmental noises that affect the

stability of the equilibrium. In this paper, the Hopfield neural network with parameter uncertainties and

stochastic perturbations is described as follows:

dx(t) = [−(A + ∆A)x(t) + (W + ∆W )l(x(t − h))]dt + [(∆C)x(t) + (∆D)x(t − h)]dw(t), (5)

where w(t) = [w1(t), w2(t), · · · , xm(t)]T ∈ R
m is a Brownian motion defined on (Ω,F , {Ft}t≥0, P ), and the

matrices ∆A, ∆W , ∆C and ∆D are of the following structure

[∆A ∆W ∆C ∆D] = MF [N1 N2 N3 N4], (6)

where A, W , M , Ni (i = 1, 2, 3, 4) are known real constant matrices with appropriate dimensions, and the

uncertain matrix F , which may be time-varying, is unknown and satisfies

F T F ≤ I. (7)

Remark 2: The parameter uncertainty structure as in (6)-(7) has been widely exploited in the problems of

robust control and robust filtering of uncertain systems (see e.g., [25], [26] and the references therein). Many

practical systems possess parameter uncertainties which can be either exactly modeled or overbounded by (7).

Observe that the unknown matrix F in (6) can even be allowed to be state-dependent, i.e., F (t) = F (t, x(t)),

as long as (7) is satisfied. On the other hand, the stochastic disturbance term, [(∆C)x(t)+(∆D)x(t−h)]dw(t),

can be viewed as stochastic perturbations on the neuron states and delayed neuron states.

Let x(t; ξ) denote the state trajectory of the neural network (5) from the initial data x(θ) = ξ(θ) on

−h ≤ θ ≤ 0 in L2
F0

([−h, 0]; Rn). It can be easily seen that the system (5) admits a trivial solution x(t; 0) ≡ 0

corresponding to the initial data ξ = 0, see [5], [15].

We are now ready to introduce the notion of robust global asymptotic stability for the stochastic neural

network (5) with parameter uncertainties and time-delays.

Definition 1: For the neural network (5) and every ξ ∈ L2
F0

([−h, 0]; Rn), the trivial solution (equilibrium

point) is robustly, globally, asymptotically stable in the mean square if, for all admissible uncertainties satis-

fying (7), the following holds:

lim
t→∞

E|x(t; ξ)|2 = 0. (8)
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The main purpose of this paper is to establish LMI-based stability criteria under which the global robust

asymptotic stability of the uncertain stochastic delayed neural network (5) can be tested conveniently by using

the Matlab LMI toolbox.

III. Main results and proofs

The following lemmas will be repeatedly used in deriving the desired LMI-based stability criteria.

Lemma 1: Let x ∈ R
n, y ∈ R

n and ε > 0. Then we have xT y + yT x ≤ εxT x + ε−1yTy.

Proof: The proof follows from the inequality (ε1/2x − ε−1/2y)T (ε1/2x − ε−1/2y) ≥ 0 immediately.

Lemma 2: [25] Let A, D, E, F and P be real matrices of appropriate dimensions with P > 0 and F

satisfying F T F ≤ I. Then for any scalar ε > 0 satisfying P−1 − ε−1DDT > 0, we have

(A + DFE)T P (A + DFE) ≤ AT (P−1 − ε−1DDT )−1A + εET E.

Lemma 3: [4] Given constant matrices Σ1, Σ2, Σ3 where Σ1 = ΣT
1 and 0 < Σ2 = ΣT

2 , then

Σ1 + ΣT
3 Σ−1

2
Σ3 < 0

if and only if
[

Σ1 ΣT
3

Σ3 −Σ2

]

< 0, or

[

−Σ2 Σ3

ΣT
3 Σ1

]

< 0.

Lemma 4: [14] For any positive definite matrix M > 0, scalar γ > 0, vector function ω : [0, γ] → R
n such

that the integrations concerned are well defined, the following inequality holds:

(
∫ γ

0

ω(s)ds

)T

M

(
∫ γ

0

ω(s)ds

)

≤ γ

(
∫ γ

0

ωT (s)Mω(s)ds

)

For the sake of presentation simplicity, we denote:

Ω1 := −AP − PA + Q1 + hQ2 + µ4N
T
3 N3, (9)

Ω2 := (ε1 + ε3)PMMT P + ε−1

1
NT

1 N1 + ε2PWW TP, (10)

R1 :=
[

ε
1/2

1
PM ε

−1/2

1
NT

1 ε
1/2

2
PW ε

1/2

3
PM

]

, (11)

R2 :=
[

ε
−1/2

2
GT ε

−1/2

3
λ

1/2
max(NT

2 N2)G
T

]

, (12)

Ξ = −Q1 + ε−1
2

GT G + ε−1
3

λmax(N
T
2 N2)G

T G + ε4N
T
4 N4. (13)

The main theorem given below shows that the stability criteria can be expressed in terms of the feasibility

of two linear matrix inequalities.

Theorem 1: If there exist positive scalars µi > 0 (i = 1, 2, 3, 4) and positive definite matrices P = P T > 0,
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Q1 = QT
1 > 0 and Q2 = QT

2 > 0 such that the following two linear matrix inequalities

[

−P PM

MT P −µ4I

]

< 0, (14)

































Ω1 µ4N
T
4 N3 PM µ1N

T
1 PW PM 0 0

µ4N
T
3 N4 −Q1 + µ4N

T
4 N4 0 0 0 0 µ2G

T µ3λ
1/2
max(NT

2 N2)G
T

MT P 0 −µ1I 0 0 0 0 0

µ1N1 0 0 −µ1I 0 0 0 0

W T P 0 0 0 −µ2I 0 0 0

MT P 0 0 0 0 −µ3I 0 0

0 µ2G 0 0 0 0 −µ2I 0

0 µ3λ
1/2
max(NT

2 N2)G 0 0 0 0 0 −µ3I

































< 0 (15)

hold where Ω1 is defined in (9), then the dynamics of the neural network (5) is robustly, globally, asymptotically

stable in the mean square.

Proof: First of all, denote

µ1 = ε−1

1
, µ2 = ε−1

2
, µ3 = ε−1

3
, µ4 = ε4.

Pre- and post-multiplying the inequality (15) by the block-diagonal matrix

diag{I, I, ε
1/2

1
I, ε

1/2

1
I, ε

1/2

2
I, ε

1/2

3
I, ε

1/2

2
I, ε

1/2

3
I}

yield































Ω1 ε4N
T
4 N3 ε

1/2

1
PM ε

−1/2

1
NT

1 ε
1/2

2
PW ε

1/2

3
PM 0 0

ε4N
T
3

N4 −Q1 + ε4N
T
4

N4 0 0 0 0 ε
−1/2

2
GT ε

−1/2

3
λ

1/2

max(NT
2

N2)G
T

ε
1/2

1
MT P 0 −I 0 0 0 0 0

ε
−1/2

1
N1 0 0 −I 0 0 0 0

ε
1/2

2
WT P 0 0 0 −I 0 0 0

ε
1/2

3
MT P 0 0 0 0 −I 0 0

0 ε
−1/2

2
G 0 0 0 0 −I 0

0 ε
−1/2

3
λ

1/2

max(NT
2 N2)G 0 0 0 0 0 −I































< 0

(16)

or
[

Σ1 ΣT
3

Σ3 −Σ2

]

< 0, (17)

where

Σ1 :=

[

Ω1 ε4N
T
4 N3

ε4N
T
3 N4 −Q1 + ε4N

T
4 N4

]

, Σ3 :=

[

RT
1 0

0 RT
2

]

, Σ2 := I,

and R1 and R2 are defined in (11) and (12), respectively.

It follows from the Schur Complement Lemma (Lemma 3) that (17) holds if and only if

Σ1 + ΣT
3 Σ−1

2
Σ3 < 0,
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or
[

Ω1 + Ω2 ε4N
T
4 N3

ε4N
T
3 N4 Ξ

]

< 0, (18)

where Ω1, Ω2 and Ξ are defined in (9), (10) and (13), respectively.

Summing up the results obtained so far, we conclude that, from the condition (15) of Theorem 1, there

exist positive scalars εi > 0 (i = 1, 2, 3, 4) and positive definite matrices P = P T > 0, Q1 = QT
1 > 0 and

Q2 = QT
2 > 0 such that (18) is true. Also, it follows immediately from (4) that

lT (x)l(x) ≤ |Gx|2 = xT GT Gx. (19)

Define a Lyapunov-Krasovskii functional candidate V (t, x(t)) ∈ C2,1(R+ × R
n; R+) by

V (t, x(t)) = xT (t)Px(t) +

∫ t

t−h
xT (s)Q1x(s)ds +

∫

0

−h

∫ t

t+s
xT (η)Q2x

T (η)dηds. (20)

By Itô’s differential formula (see, e.g., [12]), the stochastic derivative of V (t, x(t)) along (5) can be obtained

as follows:

dV (t, x(t)) =

{

xT (t)(−AP − PA + Q1 + hQ2)x(t) − 2xT (t)P (∆A)x(t)

+ 2xT (t)PWl(x(t − h)) + 2xT (t)P (∆W )l(x(t − h))

+ [(∆C)x(t) + (∆D)x(t − h)]T P [(∆C)x(t) + (∆D)x(t − h)]

− xT (t − h)Q1x(t − h) −

∫ t

t−h
xT (s)Q2x(s)ds

}

dt

+
{

2xT (t)P [(∆C)x(t) + (∆D)x(t − h)]
}

dw(t). (21)

For the positive scalars ε1 > 0, ε2 > 0, ε3 > 0, it follows from Lemma 1, the fact F T F ≤ I and the relation

(19) that

−2xT (t)P (∆A)x(t) = −2xT (t)PMFN1x(t)

≤ ε1x
T (t)PMMT Px(t) + ε−1

1
xT (t)NT

1 F T FN1x(t)

≤ xT (t)(ε1PMMT P + ε−1
1

NT
1 N1)x(t), (22)

2xT (t)PWl(x(t − h)) ≤ ε2x
T (t)PWW TPx(t) + ε−1

2
lT (x(t − h))l(x(t − h))

≤ ε2x
T (t)PWW TPx(t) + ε−1

2
xT (t − h)GT Gx(t − h), (23)

2xT (t)P (∆W )l(x(t − h)) = 2xT (t)PMFN2l(x(t − h))

≤ ε3x
T (t)PMMT Px(t) + ε−1

3
lT (x(t − h))NT

2 N2l(x(t − h))

≤ ε3x
T (t)PMMT Px(t) + ε−1

3
λmax(N

T
2 N2)l

T (x(t − h))l(x(t − h))

≤ ε3x
T (t)PMMT Px(t) + ε−1

3
λmax(N

T
2 N2)x

T (t − h)GT Gx(t − h). (24)

Note that (14) can be rewritten, by the Schur Complement Lemma (Lemma 3), as

−P + (MT P )T (ε4I)−1(MT P ) < 0,

or

P−1 − ε−1
4

MMT > 0.
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Hence, it follows from Lemma 2 that

[(∆C)x(t) + (∆D)x(t − h)]T P [(∆C)x(t) + (∆D)x(t − h)]

=
{

MF [N3x(t) + N4x(t − h)]
}T

P
{

MF [N3x(t) + N4x(t − h)]
}

≤ ε4[N3x(t) + N4x(t − h)]T [N3x(t) + N4x(t − h)]. (25)

Furthermore, it can be seen from Lemma 4 that

∫ t

t−h
xT (s)Q2x(s)ds ≥ h−1

(
∫ t

t−h
x(s)ds

)T

Q2

(
∫ t

t−h
x(s)ds

)

. (26)

Define

ζ(t) :=







x(t)

x(t − h)
∫ t
t−h x(s)ds






, Θ :=







Ω1 + Ω2 ε4N
T
4 N3 0

ε4N
T
3 N4 Ξ 0

0 0 −h−1Q2






, (27)

where Ω1, Ω2 and Ξ are defined in (9), (10) and (13), respectively.

It is obvious from (18) that Θ < 0. Also, there must exist a scalar α > 0 such that

Θ +







αI 0 0

0 0 0

0 0 0






< 0. (28)

Using (22)-(26), after tedious algebraic manipulations, we can obtain from (21) that

dV (t, x(t)) ≤







x(t)

x(t − h)
∫ t
t−h x(s)ds







T 





Ω1 + Ω2 ε4N
T
4 N3 0

ε4N
T
3 N4 Ξ 0

0 0 −h−1Q2













x(t)

x(t − h)
∫ t
t−h x(s)ds







+{2xT (t)P [(∆C)x(t) + (∆D)x(t − h)]}dw(t)

= ζT (t)Θζ(t)dt + {2xT (t)P [(∆C)x(t) + (∆D)x(t − h)]}dw(t). (29)

Taking the mathematical expectation of both sides of (29) and considering (28), we have

dEV (t, x(t))

dt
≤ E

(

ζT (t)Θζ(t)
)

≤ −αE|x(t)|2, (30)

which indicates from the Lyapunov stability theory that the dynamics of the neural network (5) is robustly,

globally, asymptotically stable in the mean square. This completes the proof of Theorem 1.

Remark 3: Notice that in Theorem 1, the matrix inequalities (14)(15) are linear on the parameters µi > 0

(i = 1, 2, 3, 4), P > 0, Q1 > 0 and Q2 > 0. Therefore, by using the Matlab LMI toolbox, it is straightforward

to check the feasibility of (14)(15) without tuning any parameters. Different from the existing results based

on matrix norm computation, such as those given in [1], [6], the LMI approach developed in this paper

is numerically more efficient [4]. The LMI Control Toolbox implements state-of-the-art interior-point LMI

solvers. While these solvers are significantly faster than classical convex optimization algorithms, it should

be kept in mind that the complexity of LMI computations remains higher than that of solving, say, a Riccati

equation. For instance, problems with a thousand design variables typically take over an hour on today’s
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workstations [4]. However, research on LMI optimization is a very active area in the applied math, optimization

and the operations research community, and substantial speed-ups can be expected in the future.

Remark 4: Note that Lemma 1 is used in the proof of Theorem 1 to tackle the parameter uncertainties,

hence certain conservatism might be introduced. Such conservatism can be significantly reduced by selecting

proper scalar parameters ε, see [28] for more details. We like to point out that, following the similar line of

[23], it is not difficult to prove the exponential stability (in the mean square) of the neural network (5) under

same conditions in Theorem 1.

In the following, we show that our main results can be easily specialized to two cases that have been studied

in the literature.

First, assume that there are no stochastic disturbances, and the neural network is described as

ẋ(t) = −(A + ∆A)x(t) + (W + ∆W )l(x(t − h)). (31)

We have the following results.

Corollary 1: If there exist positive scalars µi > 0 (i = 1, 2, 3) and positive definite matrices P = P T > 0,

Q1 = QT
1 > 0 and Q2 = QT

2 > 0 such that the following linear matrix inequality



























−AP − PA + Q1 + hQ2 0 PM µ1N
T
1 PW PM 0 0

0 −Q1 0 0 0 0 µ2G
T µ3λ

1/2

max(NT
2

N2)G
T

MT P 0 −µ1I 0 0 0 0 0

µ1N1 0 0 −µ1I 0 0 0 0

WT P 0 0 0 −µ2I 0 0 0

MT P 0 0 0 0 −µ3I 0 0

0 µ2G 0 0 0 0 −µ2I 0

0 µ3λ
1/2

max(NT
2 N2)G 0 0 0 0 0 −µ3I



























< 0

(32)

hold, then the dynamics of the neural network (31) is robustly, globally, asymptotically stable.

Second, if there are no parameter uncertainties in A and W , that is, the neural network is simplified to

dx(t) = [−Ax(t) + Wl(x(t − h))]dt + [(∆C)x(t) + (∆D)x(t − h)]dw(t), (33)

then we have the following corollary.

Corollary 2: If there exist positive scalars µ1 > 0, µ2 > 0 and positive definite matrices P = P T > 0,

Q1 = QT
1 > 0 and Q2 = QT

2 > 0 such that the following two linear matrix inequalities
[

−P PM

MT P −µ2I

]

< 0, (34)













−AP − PA + Q1 + hQ2 + µ2N
T
3 N3 µ2N

T
4 N3 PW 0

µ4N
T
3 N4 −Q1 + µ2N

T
4 N4 0 µ1G

T

W T P 0 −µ1I 0

0 µ1G 0 −µ1I













< 0 (35)

hold, then the dynamics of the neural network (5) is globally asymptotically stable in the mean square.

IV. Numerical examples

Two simple examples are presented here in order to illustrate the usefulness of our main results. Our aim

is to examine the global asymptotic stability of a given delayed stochastic neural network.
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Example 1. In this example, we consider a two-neuron uncertain neural network (31) with time delays but

without stochastic disturbances, where

A =

[

1.2 0

0 1.15

]

, W =

[

0.4 −1

−1.4 0.4

]

, M =

[

0.1 0.5

0.5 0.3

]

,

N1 =

[

0.6 0

0 0.6

]

, N2 =

[

0.2 0

0 0.2

]

, G =

[

0.5 0

0 0.5

]

, h = 0.12

By using the Matlab LMI toolbox, we solve the LMI (32) for µi > 0 (i = 1, 2, 3), P > 0, Q1 > 0, Q2 > 0

and obtain

µ1 = 1.4449e + 008, µ2 = 4.6044e + 008, µ3 = 6.2341e + 008,

P = 108

[

2.2695 0.0935

0.0935 1.5337

]

, Q1 = 108

[

1.8982 0.0772

0.0772 1.2321

]

, Q2 = 10−10

[

0.0004 −0.0108

−0.0108 0.1145

]

.

Therefore, it follows from Corollary 1 that the two-neuron neural network (31) is robustly globally asymptot-

ically stable.

Example 2. Now, let us consider a third-order delayed stochastic neural network (5) with parameter

uncertainties. The network data are given as follows:

A =







2.2 0 0

0 2.4 0

0 0 2.6






, W =







0.3 −1.8 0.5

−1.1 1.6 1.1

0.6 0.4 −0.3






,

M = diag{0.1, 0.5, 0.3}, N1 = 0.6I3, N2 = N3 = N4 = 0.2I3, G = 0.5I3, h = 0.8.

Again, by solving the LMIs (14)-(15) for µi > 0 (i = 1, 2, 3, 4), P > 0, Q1 > 0, Q2 > 0, we have

µ1 = 2.8220e + 008, µ2 = 4.8203e + 008, µ3 = 3.5802e + 008, µ4 = 2.9091e + 008,

P = 108







1.9536 0.3183 0.0282

0.3183 1.6569 −0.0041

0.0282 −0.0041 2.0321






,

Q1 = 108







2.6542 0.6378 0.0860

0.6378 2.3518 0.0310

0.0860 0.0310 3.2208






, Q2 = 10−8







0.1505 0.0023 0.0149

0.0023 0.2486 0.0037

0.0149 0.0037 0.0153






,

which indicates from Theorem 1 that the delayed uncertain stochastic neural network (5) is robustly, globally,

asymptotically stable in the mean square.

V. Conclusions

In this paper, we have dealt with the problem of global asymptotic stability analysis for a class of uncertain

stochastic delayed neural networks, which involve both the parameter uncertainties and the time-delays. We

have removed the traditional monotonicity and smoothness assumptions on the activation function. A linear

matrix inequality (LMI) approach has been developed to derive the stability criteria, which can be tested

easily using the Matlab LMI toolbox. Simple examples have been used to demonstrate the usefulness of the

main results. One of the future research topics would be the extension of the present results to more general

cases, for example, the case that the delays are mixed, including both discrete and distributed delays, and the

case that exponential stability is investigated. The results will appear in the near future.
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