1,689 research outputs found

    INFLUENCE OF ANKLE PASSIVE RANGE OF MOTION ON THE PERFORMANCE OF THE STAR EXCURSION BALANCE TEST

    Get PDF
    The purpose of this study was to measure the association between ankle passive range of motion (PROM) and the horizontal distance reached during the Star Excursion Balance Test (SEBT). Nineteen participants without any musculoskeletal and neurological injury performed the SEBT on eight directions proposed in the original protocol. The ankle PROM was measured with a manual goniometric device prior to the performance of the test. To determine the association between the distance reached during SEBT and the ankle PROM, we used the Pearson Correlation Coefficient Test (“r”). All directions of SEBT showed low correlation with the ankle PROM without significant differences for any variable. We concluded that the ankle PROM is not a confounding variable that should be monitored for use the SEBT for healthy individuals

    Benign versus malignant hepatic nodules: MR imaging findings with pathologic correlation

    Get PDF
    According to the currently used nomenclature, there are only two types of hepatocellular nodular lesions: regenerative lesions and dysplastic or neoplastic lesions. Regenerative nodules include monoacinar regenerative nodules, multiacinar regenerative nodules, cirrhotic nodules, segmental or lobar hyperplasia, and focal nodular hyperplasia. Dysplastic or neoplastic nodules include hepatocellular adenoma, dysplastic foci, dysplastic nodules, and hepatocellular carcinoma (HCC). Many of these types of hepatic nodules play a role in the de novo and stepwise carcinogenesis of HCC, which comprises the following steps: regenerative nodule, low-grade dysplastic nodule, high-grade dysplastic nodule, small HCC, and large HCC. State-of-the-art magnetic resonance (MR) imaging facilitates detection and characterization in most cases of hepatic nodules. State-of-the-art MR imaging includes single-shot fast spin-echo imaging, in-phase and opposed-phase T1-weighted gradient-echo imaging, T2-weighted fast spin-echo imaging with fat saturation, and two-dimensional or three-dimensional dynamic multiphase contrast material-enhanced imaging

    Clustering and Alignment of Polymorphic Sequences for HLA-DRB1 Genotyping

    Get PDF
    Located on Chromosome 6p21, classical human leukocyte antigen genes are highly polymorphic. HLA alleles associate with a variety of phenotypes, such as narcolepsy, autoimmunity, as well as immunologic response to infectious disease. Moreover, high resolution genotyping of these loci is critical to achieving long-term survival of allogeneic transplants. Development of methods to obtain high resolution analysis of HLA genotypes will lead to improved understanding of how select alleles contribute to human health and disease risk. Genomic DNAs were obtained from a cohort of n = 383 subjects recruited as part of an Ulcerative Colitis study and analyzed for HLA-DRB1. HLA genotypes were determined using sequence specific oligonucleotide probes and by next-generation sequencing using the Roche/454 GSFLX instrument. The Clustering and Alignment of Polymorphic Sequences (CAPSeq) software application was developed to analyze next-generation sequencing data. The application generates HLA sequence specific 6-digit genotype information from next-generation sequencing data using MUMmer to align sequences and the R package diffusionMap to classify sequences into their respective allelic groups. The incorporation of Bootstrap Aggregating, Bagging to aid in sorting of sequences into allele classes resulted in improved genotyping accuracy. Using Bagging iterations equal to 60, the genotyping results obtained using CAPSeq when compared with sequence specific oligonucleotide probe characterized 4-digit genotypes exhibited high rates of concordance, matching at 759 out of 766 (99.1%) alleles. © 2013 Ringquist et al

    Design and Integration of Electrical Bio-Impedance Sensing in a Bipolar Forceps for Soft Tissue Identification: A Feasibility Study

    Get PDF
    This paper presents the integration of electrical bio-impedance sensing technology into a bipolar surgical forceps for soft tissue identification during a robotic assisted procedure. The EBI sensing is done by pressing the forceps on the target tissue with a controlled pressing depth and a controlled jaw opening distance. The impact of these 2 parameters are characterized by finite element simulation. Subsequently, an experiment is conducted with 4 types of ex-vivo tissues including liver, kidney, lung and muscle. The experimental results demonstrate that the proposed EBI sensing method can identify these 4 tissue types with an accuracy higher than 92.82%

    Human-like PB2 627K Influenza Virus Polymerase Activity Is Regulated by Importin-α1 and -α7

    Get PDF
    Influenza A viruses may cross species barriers and transmit to humans with the potential to cause pandemics. Interplay of human- (PB2 627K) and avian-like (PB2 627E) influenza polymerase complexes with unknown host factors have been postulated to play a key role in interspecies transmission. Here, we have identified human importin-α isoforms (α1 and α7) as positive regulators of human- but not avian-like polymerase activity. Human-like polymerase activity correlated with efficient recruitment of α1 and α7 to viral ribonucleoprotein complexes (vRNPs) without affecting subcellular localization. We also observed that human-like influenza virus growth was impaired in α1 and α7 downregulated human lung cells. Mice lacking α7 were less susceptible to human- but not avian-like influenza virus infection. Thus, α1 and α7 are positive regulators of human-like polymerase activity and pathogenicity beyond their role in nuclear transport

    Teprotumumab for Thyroid-Associated Ophthalmopathy

    Get PDF
    BACKGROUND: Thyroid-associated ophthalmopathy, a condition commonly associated with Graves’ disease, remains inadequately treated. Current medical therapies, which primarily consist of glucocorticoids, have limited efficacy and present safety concerns. Inhibition of the insulin-like growth factor I receptor (IGF-IR) is a new therapeutic strategy to attenuate the underlying autoimmune pathogenesis of ophthalmopathy. / METHODS: We conducted a multicenter, double-masked, randomized, placebo-controlled trial to determine the efficacy and safety of teprotumumab, a human monoclonal antibody inhibitor of IGF-IR, in patients with active, moderate-to-severe ophthalmopathy. A total of 88 patients were randomly assigned to receive placebo or active drug administered intravenously once every 3 weeks for a total of eight infusions. The primary end point was the response in the study eye. This response was defined as a reduction of 2 points or more in the Clinical Activity Score (scores range from 0 to 7, with a score of ≄3 indicating active thyroid-associated ophthalmopathy) and a reduction of 2 mm or more in proptosis at week 24. Secondary end points, measured as continuous variables, included proptosis, the Clinical Activity Score, and results on the Graves’ ophthalmopathy–specific quality-of-life questionnaire. Adverse events were assessed. / RESULTS: In the intention-to-treat population, 29 of 42 patients who received teprotumumab (69%), as compared with 9 of 45 patients who received placebo (20%), had a response at week 24 (P<0.001). Therapeutic effects were rapid; at week 6, a total of 18 of 42 patients in the teprotumumab group (43%) and 2 of 45 patients in the placebo group (4%) had a response (P<0.001). Differences between the groups increased at subsequent time points. The only drug-related adverse event was hyperglycemia in patients with diabetes; this event was controlled by adjusting medication for diabetes. / CONCLUSIONS: In patients with active ophthalmopathy, teprotumumab was more effective than placebo in reducing proptosis and the Clinical Activity Score. (Funded by River Vision Development and others; ClinicalTrials.gov number, NCT01868997.

    FAK acts as a suppressor of RTK-MAP kinase signalling in Drosophila melanogaster epithelia and human cancer cells

    Get PDF
    Receptor Tyrosine Kinases (RTKs) and Focal Adhesion Kinase (FAK) regulate multiple signalling pathways, including mitogen-activated protein (MAP) kinase pathway. FAK interacts with several RTKs but little is known about how FAK regulates their downstream signalling. Here we investigated how FAK regulates signalling resulting from the overexpression of the RTKs RET and EGFR. FAK suppressed RTKs signalling in Drosophila melanogaster epithelia by impairing MAPK pathway. This regulation was also observed in MDA-MB-231 human breast cancer cells, suggesting it is a conserved phenomenon in humans. Mechanistically, FAK reduced receptor recycling into the plasma membrane, which resulted in lower MAPK activation. Conversely, increasing the membrane pool of the receptor increased MAPK pathway signalling. FAK is widely considered as a therapeutic target in cancer biology; however, it also has tumour suppressor properties in some contexts. Therefore, the FAK-mediated negative regulation of RTK/MAPK signalling described here may have potential implications in the designing of therapy strategies for RTK-driven tumours

    Natural disasters and indicators of social cohesion

    Get PDF
    Do adversarial environmental conditions create social cohesion? We provide new answers to this question by exploiting spatial and temporal variation in exposure to earthquakes across Chile. Using a variety of methods and controlling for a number of socio-economic variables, we find that exposure to earthquakes has a positive effect on several indicators of social cohesion. Social cohesion increases after a big earthquake and slowly erodes in periods where environmental conditions are less adverse. Our results contribute to the current debate on whether and how environmental conditions shape formal and informal institutions
    • 

    corecore