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Design and integration of electrical bio-impedance sensing in a bipolar forceps for
soft tissue identification: a feasibility study

Zhuoqi Cheng1, Diego Dall’Alba2, Darwin G. Caldwell1, Paolo Fiorini2 and Leonardo S. Mattos1

1 Department of Advanced Robotics, Istituto Italiano di Tecnologia, Genova, Italy
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Abstract— This paper presents the integration of electrical
bio-impedance sensing technology into a bipolar surgical for-
ceps for soft tissue identification during a robotic assisted proce-
dure. The EBI sensing is done by pressing the forceps on the tar-
get tissue with a controlled pressing depth and a controlled jaw
opening distance. The impact of these 2 parameters are char-
acterized by finite element simulation. Subsequently, an experi-
ment is conducted with 4 types of ex-vivo tissues including liver,
kidney, lung and muscle. The experimental results demonstrate
that the proposed EBI sensing method can identify these 4 tissue
types with an accuracy higher than 92.82%.

Keywords— electrical bio-impedance, tissue identification,
bipolar forceps, electrode configuration, finite element method

I. INTRODUCTION

Robot-assisted minimal invasive surgery (RMIS) has been
increasingly adopted in the clinical setting in the last fifteen
years since this technology provides many benefits for both
patients and surgeons. From the patient side, RMIS guaran-
tees better outcomes than other more invasive approaches (i.e.
open-surgery), similar to other minimally invasive surgical
procedures (e.g. laparoscopy) [1]. From the surgeons point of
view, RMIS guarantees improved dexterity, movements scal-
ing and magnified tri-dimensional video feedback. Unfortu-
nately, RMIS technologies available nowadays suffer from
the limitations in terms of sensing modalities. Vision from
the endoscopic cameras is the only sensing method for most
commercial surgical robots. Due to the intrinsic limitations of
endoscopic video images, performing automatic detection of
different tissue types based on this data source can not pro-
vide the required robustness and reliability for supporting the
execution of surgical procedure, especially when the field of
view is under poor illumination, partially occluded, or foggy
due to surgical smoke [2].

Electrical bio-impedance (EBI) sensing has potential to be
very helpful in this application, enabling reliable and robust
tissue identification while providing advantages such as low
cost and fast detection. For instance, EBI technology is able
to identify different tissue types with a needle electrode, as

shown in [3]. In [4, 5], Cheng et al. exploit the EBI sen-
sor with a concentric electric needle to detect blood during
a peripheral intravenous catheterization, showing a signifi-
cant improvement of the operation success rate. In addition,
different systems and techniques based on EBI sensing are
proposed and developed for various cancer diagnosis such as
hepatic cancer [6], breast cancer [7] and skin cancer [8].

Nevertheless, the capability and accuracy of tissue identifi-
cation by measuring their EBI property significantly depends
on the electrodes’ configuration such as the relative distance
and the size of electrodes [9]. Thus, most works in previous
literature are based on custom designed EBI sensing probes
that avoid this problem by imposing fixed electrode configu-
ration. The adoption of the same solution in RMIS procedures
is complex because it would require the design of a novel sur-
gical tool with integrated EBI sensor or a drop-in probe.

In this study, we propose to simplify this issue by inte-
grating the EBI sensing capability to existing robotic bipolar
forceps. This requires minimum hardware modifications as
the electrodes of the bipolar forceps can be readily used as
the sensing electrodes. With the proposed system, the sur-
geon can perform real-time tissue identification by slightly
pressing the forceps on the tissue surface, directly during the
surgical tissue manipulation.

II. METHODS

A. EBI sensing modeling

Fig.1 shows the modeling of EBI sensing using a bipo-
lar forceps. Since this study focuses on soft tissues and the
EBI measurement is done by touching the tissue producing a
small pressing depth (d ≤ 4mm), we assume that the induced
tissue deformation ensures a complete contact between the
electrode surface and the tissue. Electrode 1 and Electrode 2
are the two jaws of the bipolar forceps. To measure the EBI
of the tissue, a safe electrical AC voltage (U) is injected. By
obtaining the reciprocal current (I), the electrical impedance
(Z) can be calculated as Z = U

I . Furthermore, the reciprocal
current I can be obtained by integrating the current density J
through a cross-sectional area A.



Fig. 1: Modeling the EBI sensing of soft tissue with a bipolar forceps.

I =
∫

A
J =

∫
A
(−iωε̂E) (1)

Specifically, the current density J at a point p on the area A
can be computed as the product of complex permittivity of the
contacting tissue (ε̂) and the electrical field strength E at that
point. Also, the complex permittivity ε̂ is a function of tissue
conductivity σ , permittivity ε ′ and excitation frequency ω:
ε̂ = iσ/ω + ε ′. Moreover, |Z| can be computed as

|Z|= |U |
|ωε̂||

∫
A E|

(2)

Given that U has a constant amplitude, |Z| depends on two
variables: the electric field generated by the jaws of the for-
ceps E and the electric properties of the contacting material
ε̂ . Assuming the contacting material is homogeneous and a
constant frequency ω is used, |ωε̂| is identical for each tis-
sue type. Thus, we can assume that it is independent of the
electric field strength E to simplify the model.

The electric field strength−→E is the sum of the electric field
generated by Electrode 1 (−→E1) and Electrode 2 (−→E2), and they
can be calculated using the Coulomb’s law:

dE = dE1 +dE2 =
∫

S1

dq1

4πε0r2
1
+

∫
S2

dq2

4πε0r2
2

(3)

where ε0 is the electric constant, and S1 and S2 are the con-
tacting area of Electrode 1 and 2 respectively, which are func-
tions of the insertion depth d. ri is the distance from a face
element on Electrode i to Point p, and dqi is the charge on
the face element. In addition, ri is a function of the electrode
pressing depth d, the jaw opening distance L, and the depth
of point h: ri =

√
(h−d)2 +(L/2)2

Consequently, we can find that d and L are the two main
parameters that impact the measurement of |Z|. To better
characterize their influences, quantitative analysis is done by
Finite Element (FE) simulation before testing the proposed
EBI sensing method with ex-vivo tissue samples.

Fig. 2: (A) The FEM simulation of the EBI sensing with a bipolar forceps.
(B) The dimension of the Maryland bipolar forceps. (C) The simulation

results of EBI with different d and L.

B. FE Simulation of EBI sensing with a bipolar forceps

As shown in Fig. 2(A), the tissue is modelled as an ho-
mogeneous and isotropic gray block (20×20×20 mm3). The
two purple prisms represent the electrodes whose designs are
derived from the shapes of the surgical forceps’ jaws (Fig.
2(D)). The electrodes are inserted into the tissue with a depth
d and a distance L between two electrodes.

In the simulation, L was set from 2 to 8 mm with a step
of 2 mm, and d was set from 0 to 4 mm with a step of
1 mm. Previous studies indicate that ε̂ can increase with tis-
sue compression [10, 11]. However, in our case, the tissue
samples are thicker (20 mm) and the pressing displacement
is small (≤4 mm), corresponding to a small compression rate
(≤20%). Therefore, the increment of ε̂ would be less than
10% during the tissue compression according to the above
studies. The change of ε̂ is neglected in this study since the
impact from the change of E during the pressing of forceps,
which will be illustrated later, is much greater. Considering
the modeling described in Section II.A, we set the conductiv-
ity to σ0 S/m and permittivity ε ′ of the tissue to be 0. There-
fore, |ωε̂| is equal to σ0. This simplification enables the FE
simulation to be done using DC voltage, but does not affect
the accuracy of the results.

The software package ANSYS Multiphysics was used for
running the simulation. The results demonstrated that |Z| de-
creased when d was bigger and L was smaller. The sensi-
tivities of |Z| to d and L were calculated: the sensitivity to
d ranged from 449/σ0 Ω/mm to 24.2/σ0 Ω/mm, and the sen-



sitivity to L was from 31.8/σ0 Ω/mm to 6.3/σ0 Ω/mm. The
higher sensitivity was found for the smaller value of L and d.

Based on the simulation results, we propose to measure |Z|
of the touching tissue with a specific jaw opening distance
L and a flexible pressing depth d within a range from 2 to
4 mm during the application. This design considers that |Z| is
very sensitive to d, and in actual use it is difficult to obtain
an accurate d since the measured organ can be moving due
to physiological motions. In contrast, since L can be easily
controlled by the surgical robotic system and this value has
relatively low influence to |Z|, this parameter is controlled to
be a specific value. Also, the range of d is set to be from 2
to 4 mm because when the tool tip barely touches the tissue
(d = 0 and 1 mm) the tool tips may have unstable contact
with the tissue, while when the forceps is pressing too deeply
(d > 4mm) complications due to large tissue deformations
and the change of tissue electric property can be involved.

C. Experimental evaluation with ex-vivo porcine tissues

Ex-vivo experiments were conducted to evaluate the pro-
posed sensing method for tissue identification. A prototype
of EBI sensor was made for the experiments as shown in Fig.
3(A). The EBI sensor consists of an electrical impedance con-
verter (AD5933, Analog Inc., USA) and a micro-controller
(Atmega328P, Atmel Co., USA). It can be directly mounted
on top of a daVinci endowrist instruments (Maryland bipolar
forceps Ref. 400172), and connected to its proximal end for
measuring the EBI of the tissue contacting its jaws using the
electrification connections already integrated in the tool. The
measured value is sent to a computer via USB. The peak-to-
peak voltage of the EBI sensor is set to be 0.4 V in order to
satisfy the international standard IEC 60601. In addition, the
excitation frequency is set to be 100 kHz, allowing the system
to classify most different tissue types according to Kalvoy et
al. [3] and Gabriel et al. [12]. Then the EBI sensor was cal-
ibrated with several known resistors ranging from 786 Ω to
8.2 kΩ, which covers the range of EBI for most tissue types
(please refer to Fig. 4). The error rate was found to be 0.59%
in average, and the maximum error rate was found to be 1.2%.

The experimental setup for measuring the EBI of ex-vivo
porcine tissues is shown in Fig. 3(B). Four tissue types were
used including muscle, liver, kidney, and lung. The forceps
with the EBI sensor was fixed to the 4th stage of a micro-
motion stage (Siskiyou Co., USA) for controlling its vertical
movement. During the experiments, L was fixed to be one of
the followings: 2, 4, 6, and 8 mm. The position of the forceps
was firstly adjusted to just touch the tissue, and this position
was initialized as d = 0. Then we controlled the forceps to
move 4 mm downwards, and recorded |Z| in every 1 mm. Five

Fig. 3: (A)The prototype of the EBI sensing device; (B)The setup of the
ex-vivo experiment.

Fig. 4: The ex-vivo experimental results of four tissue types with different L
and d = 2 to 4 mm.

samples were prepared for each tissue type, and 10 measure-
ments were collected for different d and different L.

III. RESULTS

For each tissue type Θi and a specific L j, the experimen-
tal results with d = 2 to 4 mm were grouped as a class. All
the classes were found to be normally distributed by the
Kolmogorov-Smirnov test (all the p values are >0.05). Sub-
sequently, the maximum likelihood estimation method was
used to describe each class as Ci j = N(µi j,σi j). Fig. 4 shows
the Gaussian models with a width of 4 standard deviations
of the mean in different L. In addition, the confusion matrix
based on the±2σ Gaussian model was calculated and shown
in Table 1. Each row of the matrix represents the tissue types
determined by the EBI sensing system while each column
represents the ground-truth tissue type. The confusion matrix
indicates that the four tissue types can be classified with con-



Table 1: The confusion matrix: percentage of correctly classified tissue.

L=2 mm muscle liver kidney lung
muscle 100% 0 0 0
liver 7.18% 92.82% 0 0
kidney 0 3.14% 96.77% 0.09%
lung 0 0 0.59% 99.41%
L=4 mm muscle liver kidney lung
muscle 97.74% 2.26% 0 0
liver 6.56% 93.44% 0 0
kidney 0 0 99.95% 0.05%
lung 0 0 3.32% 96.68%
L=6 mm muscle liver kidney lung
muscle 98.03% 1.97% 0 0
liver 6.14% 93.86% 0 0
kidney 0 1.14% 97.89% 0.97%
lung 0 0 1.24% 98.76%
L=8 mm muscle liver kidney lung
muscle 99.24% 0.76% 0 0
liver 6.77% 93.23% 0 0
kidney 0 0 98.69% 1.31%
lung 0 0 4.31% 95.69%

siderably high accuracy (≥92.82%) using the proposed EBI
sensing method.

IV. DISCUSSIONS

This study designed and assessed new technology to ex-
ploit EBI sensing on bipolar forceps for tissue identification.
The confusion matrix for the classification of the four tissue
types presented in Table 1 demonstrates that the sensing sys-
tem can identify these tissue types with high accuracy.

In addition, the impact of two acquisition parameters,
namely d and L, were investigated in this study. We proposed
to measure |Z| with a flexible d in a defined range (2 - 4 mm).
This is because the EBI measurement is very sensitive to the
parameter d according to the FE simulation in Section II.B.
However, in practice, the pressing depth information is esti-
mated by the kinematic information of the surgical robotic
system, and this information may not be very accurate due to
the limitation of the robot’s encoder and the movement of the
measured organ. In contrast, the proposed EBI measurement
protocol requires the parameter L to be known, which can be
obtained from the robotic system controller.

V. CONCLUSION

In this work we have presented an EBI measurement sys-
tem that could be easily integrated in standard bipolar surgi-
cal tools for improving the sensing capabilities during RMIS

procedures. The proposed system has been tested on ex-vivo
animal tissue samples to evaluate its reliability. We have also
identified the acquisition parameters that affect the EBI mea-
surements obtained with a bipolar tool. The results confirm
that the proposed system is able to repetitively recognize dif-
ferent types of tissue. Physical simulation has been performed
to model the tool-tissue interaction, and the simulation re-
sults were confirmed by the experimental ones. Future work
will focus on a more accurate FE simulation model involving
tissue deformation during forceps pressing on the tissue. In
addition, the electrical impedance will be measured in mul-
tiple frequencies for improving the detection accuracy. Also,
the system will change to use current source for signal excita-
tion in order to eliminate issues with contact impedance and
guarantee a safer measurement.
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