262 research outputs found
Topology of supersymmetric N=1, D=4 supergravity horizons
All supersymmetric N=1, D=4 supergravity horizons have toroidal or spherical
topology, irrespective of whether the black hole preserves any supersymmetry.Comment: 17 pages, latex. Alterations to introduction and section 3.
Heterotic Black Horizons
We show that the supersymmetric near horizon geometry of heterotic black
holes is either an AdS_3 fibration over a 7-dimensional manifold which admits a
G_2 structure compatible with a connection with skew-symmetric torsion, or it
is a product R^{1,1} * S^8, where S^8 is a holonomy Spin(7) manifold,
preserving 2 and 1 supersymmetries respectively. Moreover, we demonstrate that
the AdS_3 class of heterotic horizons can preserve 4, 6 and 8 supersymmetries
provided that the geometry of the base space is further restricted. Similarly
R^{1,1} * S^8 horizons with extended supersymmetry are products of R^{1,1} with
special holonomy manifolds. We have also found that the heterotic horizons with
8 supersymmetries are locally isometric to AdS_3 * S^3 * T^4, AdS_3 * S^3 * K_3
or R^{1,1} * T^4 * K_3, where the radii of AdS_3 and S^3 are equal and the
dilaton is constant.Comment: 35 pages, latex. Minor alterations to equation (3.11) and section
4.1, the conclusions are not affecte
Brick Walls and AdS/CFT
We discuss the relationship between the bulk-boundary correspondence in
Rehren's algebraic holography (and in other 'fixed-background' approaches to
holography) and in mainstream 'Maldacena AdS/CFT'. Especially, we contrast the
understanding of black-hole entropy from the viewpoint of QFT in curved
spacetime -- in the framework of 't Hooft's 'brick wall' model -- with the
understanding based on Maldacena AdS/CFT. We show that the brick-wall
modification of a Klein Gordon field in the Hartle-Hawking-Israel state on
1+2-Schwarzschild AdS (BTZ) has a well-defined boundary limit with the same
temperature and entropy as the brick-wall-modified bulk theory. One of our main
purposes is to point out a close connection, for general AdS/CFT situations,
between the puzzle raised by Arnsdorf and Smolin regarding the relationship
between Rehren's algebraic holography and mainstream AdS/CFT and the puzzle
embodied in the 'correspondence principle' proposed by Mukohyama and Israel in
their work on the brick-wall approach to black hole entropy. Working on the
assumption that similar results will hold for bulk QFT other than the Klein
Gordon field and for Schwarzschild AdS in other dimensions, and recalling the
first author's proposed resolution to the Mukohyama-Israel puzzle based on his
'matter-gravity entanglement hypothesis', we argue that, in Maldacena AdS/CFT,
the algebra of the boundary CFT is isomorphic only to a proper subalgebra of
the bulk algebra, albeit (at non-zero temperature) the (GNS) Hilbert spaces of
bulk and boundary theories are still the 'same' -- the total bulk state being
pure, while the boundary state is mixed (thermal). We also argue from the
finiteness of its boundary (and hence, on our assumptions, also bulk) entropy
at finite temperature, that the Rehren dual of the Maldacena boundary CFT
cannot itself be a QFT and must, instead, presumably be something like a string
theory.Comment: 54 pages, 3 figures. Arguments strengthened in the light of B.S. Kay
`Instability of Enclosed Horizons' arXiv:1310.739
Domain walls and instantons in N=1, d=4 supergravity
We study the supersymmetric sources of (multi-) domain-wall and (multi-)
instanton solutions of generic N=1, d=4 supergravities, that is: the
worldvolume effective actions for said supersymmetric topological defects. The
domain-wall solutions naturally couple to the two 3-forms recently found as
part of the N=1, d=4 tensor hierarchy (i.e. they have two charges in general)
and their tension is the absolute value of the superpotential section L. The
introduction of sources (we study sources with finite and vanishing thickness)
is equivalent to the introduction of local coupling constants and results in
dramatic changes of the solutions. Our results call for a democratic
reformulation of N=1,d=4 supergravity in which coupling constants are,
off-shell, scalar fields. The effective actions for the instantons are always
proportional to the coordinate orthogonal to the twist-free embedding of the
null-geodesic (in the Wick-rotated scalar manifold) describing the instanton.
We show their supersymmetry and find the associated supersymmetric (multi-)
instanton solutions.Comment: 34 pages, 4 figures, references adde
M-Horizons
We solve the Killing spinor equations and determine the near horizon
geometries of M-theory that preserve at least one supersymmetry. The M-horizon
spatial sections are 9-dimensional manifolds with a Spin(7) structure
restricted by geometric constraints which we give explicitly. We also provide
an alternative characterization of the solutions of the Killing spinor
equation, utilizing the compactness of the horizon section and the field
equations, by proving a Lichnerowicz type of theorem which implies that the
zero modes of a Dirac operator coupled to 4-form fluxes are Killing spinors. We
use this, and the maximum principle, to solve the field equations of the theory
for some special cases and present some examples.Comment: 36 pages, latex. Reference added, minor typos correcte
Microscopic Realization of the Kerr/CFT Correspondence
Supersymmetric M/string compactifications to five dimensions contain BPS
black string solutions with magnetic graviphoton charge P and near-horizon
geometries which are quotients of AdS_3 x S^2. The holographic duals are
typically known 2D CFTs with central charges c_L=c_R=6P^3 for large P. These
same 5D compactifications also contain non-BPS but extreme Kerr-Newman black
hole solutions with SU(2)_L spin J_L and electric graviphoton charge Q obeying
Q^3 \leq J_L^2. It is shown that in the maximally charged limit Q^3 -> J_L^2,
the near-horizon geometry coincides precisely with the right-moving temperature
T_R=0 limit of the black string with magnetic charge P=J_L^{1/3}. The known
dual of the latter is identified as the c_L=c_R=6J_L CFT predicted by the
Kerr/CFT correspondence. Moreover, at linear order away from maximality, one
finds a T_R \neq 0 quotient of the AdS_3 factor of the black string solution
and the associated thermal CFT entropy reproduces the linearly sub-maximal
Kerr-Newman entropy. Beyond linear order, for general Q^3<J_L^2, one has a
finite-temperature quotient of a warped deformation of the magnetic string
geometry. The corresponding dual deformation of the magnetic string CFT
potentially supplies, for the general case, the c_L=c_R=6J_L CFT predicted by
Kerr/CFT.Comment: 18 pages, no figure
Involving people with diabetes and the wider community in diabetes research: a realist review protocol.
BACKGROUND: Patient and public involvement in diabetes research is now actively encouraged in different countries because it is believed that involving people with experience of the condition will improve the quality and relevance of the research. However, reviews of patient involvement have noted that inadequate resources, patients' and communities' lack of research knowledge, and researchers' lack of skills to involve patients and communities in research may present significant contextual barriers. Little is known about the extent of patient/community involvement in designing or delivering interventions for people with diabetes. A realist review of involvement will contribute to assessing when, how and why involvement works, or does not work, to produce better diabetes interventions. METHODS/DESIGN: This protocol outlines the process for conducting a realist review to map how patients and the public have been involved in diabetes research to date. The review questions ask the following: How have people with diabetes and the wider community been involved in diabetes research? What are the characteristics of the process that appear to explain the relative success or failure of involvement? How has involvement (or lack of involvement) in diabetes research influenced the development and conduct of diabetes research? The degree of support in the surrounding context will be assessed alongside the ways in which people interact in different settings to identify patterns of interaction between context, mechanisms and outcomes in different research projects. The level and extent of the involvement will be described for each stage of the research project. The descriptions will be critically reviewed by the people with diabetes on our review team. In addition, researchers and patients in diabetes research will be asked to comment. Information from researcher-patient experiences and documents will be compared to theories of involvement across a range of disciplines to create a mid-range theory describing how involvement (or lack of involvement) in diabetes research influences the development and conduct of diabetes research
New generalized nonspherical black hole solutions
We present numerical evidence for the existence of several types of static
black hole solutions with a nonspherical event horizon topology in
spacetime dimensions. These asymptotically flat configurations are found for a
specific metric ansatz and can be viewed as higher dimensional counterparts of
the static black rings, dirings and black Saturn. Similar to that case,
they are supported against collapse by conical singularities. The issue of
rotating generalizations of these solutions is also considered.Comment: 47 pages, 11 figures, some comments adde
Small Horizons
All near horizon geometries of supersymmetric black holes in a N=2, D=5
higher-derivative supergravity theory are classified. Depending on the choice
of near-horizon data we find that either there are no regular horizons, or
horizons exist and the spatial cross-sections of the event horizons are
conformal to a squashed or round S^3, S^1 * S^2, or T^3. If the conformal
factor is constant then the solutions are maximally supersymmetric. If the
conformal factor is not constant, we find that it satisfies a non-linear vortex
equation, and the horizon may admit scalar hair.Comment: 21 pages, latex. Typos corrected and reference adde
Boundary Terms and Junction Conditions for Generalized Scalar-Tensor Theories
We compute the boundary terms and junction conditions for Horndeski's
panoptic class of scalar-tensor theories, and write the bulk and boundary
equations of motion in explicitly second order form. We consider a number of
special subclasses, including galileon theories, and present the corresponding
formulae. Our analysis opens up of the possibility of studying tunnelling
between vacua in generalized scalar-tensor theories, and braneworld dynamics.
The latter follows because our results are independent of spacetime dimension.Comment: 13 pages, Equation corrected. Thanks to Tsutomu Kobayashi for
informing us of the typ
- âŠ