We discuss the relationship between the bulk-boundary correspondence in
Rehren's algebraic holography (and in other 'fixed-background' approaches to
holography) and in mainstream 'Maldacena AdS/CFT'. Especially, we contrast the
understanding of black-hole entropy from the viewpoint of QFT in curved
spacetime -- in the framework of 't Hooft's 'brick wall' model -- with the
understanding based on Maldacena AdS/CFT. We show that the brick-wall
modification of a Klein Gordon field in the Hartle-Hawking-Israel state on
1+2-Schwarzschild AdS (BTZ) has a well-defined boundary limit with the same
temperature and entropy as the brick-wall-modified bulk theory. One of our main
purposes is to point out a close connection, for general AdS/CFT situations,
between the puzzle raised by Arnsdorf and Smolin regarding the relationship
between Rehren's algebraic holography and mainstream AdS/CFT and the puzzle
embodied in the 'correspondence principle' proposed by Mukohyama and Israel in
their work on the brick-wall approach to black hole entropy. Working on the
assumption that similar results will hold for bulk QFT other than the Klein
Gordon field and for Schwarzschild AdS in other dimensions, and recalling the
first author's proposed resolution to the Mukohyama-Israel puzzle based on his
'matter-gravity entanglement hypothesis', we argue that, in Maldacena AdS/CFT,
the algebra of the boundary CFT is isomorphic only to a proper subalgebra of
the bulk algebra, albeit (at non-zero temperature) the (GNS) Hilbert spaces of
bulk and boundary theories are still the 'same' -- the total bulk state being
pure, while the boundary state is mixed (thermal). We also argue from the
finiteness of its boundary (and hence, on our assumptions, also bulk) entropy
at finite temperature, that the Rehren dual of the Maldacena boundary CFT
cannot itself be a QFT and must, instead, presumably be something like a string
theory.Comment: 54 pages, 3 figures. Arguments strengthened in the light of B.S. Kay
`Instability of Enclosed Horizons' arXiv:1310.739