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ABSTRACT: We present numerical evidence for the existence of several types of static black
hole solutions with a nonspherical event horizon topology in d > 6 spacetime dimensions.
These asymptotically flat configurations are found for a specific metric ansatz and can be
viewed as higher dimensional counterparts of the d = 5 static black rings, dirings and black
Saturn. Similar to that case, they are supported against collapse by conical singularities.
The issue of rotating generalizations of these solutions is also considered.
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1. Introduction

In recent years the interest in the properties of gravity in more than d = 4 dimensions has
increased significantly. This interest was enhanced by the development of string theory,
which requires a ten-dimensional spacetime, to be consistent from a quantum point of
view. An unexpected result in this area was Emparan and Reall’s discovery of the black
ring in d = 5 spacetime dimensions [fl, f]. This asymptotically flat solution of the Einstein
equations has a horizon with topology S? x S!, while the Myers-Perry black hole Bl has
a horizon topology S®. This made clear that a number of well known results in d = 4
gravity do not have a simple extension to higher dimensions. For example, the d = 5
gravity allows for multi-black hole configurations regular outside and on the horizon. In
this case, at least one of the constituents possesses a nonspherical topology of the horizon,
the simplest examples being the black Saturn [[f] (a black ring with a central black hole),
a diring [[, fi] (two concentric coplanar black rings) and bicyling black rings [ (two black
rings in orthogonal planes).

However, while one can construct an encyclopedia of general relativity exact solutions
in four and five dimensions, the situation for d > 5 is more patchy (see e.g. [§). For most of
the cases, the known solutions are very special, with a large amount of symmetry. Moreover,
it becomes clear that as the dimension increases, the phase structure of the solutions
becomes increasingly intricate and diverse. The main obstacle stopping the progress in
this field seems to be the absence of closed form solutions (apart from the Myers-Perry
black holes), which were very useful in d = 5. No general framework seems to exist for
d > 5, and the issue of constructing black objects with a nonspherical horizon topology was
considered by using various approximations or numerical methods. Most of the results in
this area have been found by using the method of matched asymptotic expansions [f, [L0].
The central assumption is that some black objects, in certain ultra-spinning regimes, can
be approximated by very thin black strings or branes curved into a given shape. However,
this method has limitations; black holes whith no black membrane behavior (e.g. at high
spins) would not be captured by this approach [[LT].

Although it would clearly be preferable to have analytic solutions', some of the d > 5
black holes with a nonspherical horizon topology can be constructed numerically, within
a nonperturbative approach, as solutions of partial differential equations with suitable
boundary conditions.

"However, one should not exclude the possibility that most of these solutions will remain analytically
intractable within a nonperturbative approach.



The main purpose of this paper is to present a general framework for a special class of
static configurations with a symmetry group Ry x U (1) x SO(d—3) and to present numerical
evidence for the existence of such solutions with nonspherical horizon topology. For d = 5,
this framework reduces to that used in [|]] to construct generalized Weyl solutions. However,
for higher values of the spacetime dimension, the solutions can be found only numerically.
We argue that the basic properties of the d = 5 case still hold for d > 5 configurations with
a symmetry group Ry X U(1) x SO(d — 3), in particular the rod structure of the solutions.
The simplest example of a d > 5 black object with a nonspherical horizon obtained within
this approach was studied in Ref. [[J] and has a horizon topology S? x S%%. In this
work, on the one hand, we extend these results and discuss the basic features of two new
types of configurations representing composite black objects with (52 X Sd_4) x §4=2
a generalized black Saturn — and also (52 X Sd_4) X (52 X Sd_4) horizons —a generalized
diring. On the other hand, within a slightly more general metric ansatz, we consider
rotating solutions in either the S2 or the S%* spheres.

This paper is organized as follows: in the next Section we present a systematic dis-
cussion of this approach together with its limitations, while in Section III we present our
numerical results. All solutions are found within a nonperturbative approach, by directly
solving Einstein equations which for our ansatz reduce to a set of four nonlinear partial
differential equations.

Since all these solutions are plagued by conical singularities which seem to be unavoid-
able in the absence of rotation, the issue of spinning solutions is addressed in Section IV.
The results reported there are only partial, and so far we could not construct spinning
balanced solutions. However, we expect that they will be useful for further work in this
direction.

Also, we have found that all new static solutions in this work have similar qualitative
properties as their five dimensional counterparts. Therefore in the Appendix A we present
the basic properties of the corresponding d = 5 solutions, which are known in closed form.
Appendix B introduces a new coordinate system which simplifies the numerical calculations
and leads to high accuracy (e.g. it has allowed to recover numerically the spinning balanced
black ring starting with the static solution).

2. The general formalism

2.1 The field equations and a metric ansatz

We consider the Einstein action

/ d%z\/—gR —

/ d¥ e/ —hK, (2.1)

167TGd 81Gy

in a d—dimensional spacetime, with d > 5. The last term in (R.1]) is the Hawking-Gibbons
surface term ], which is required in order to have a well-defined variational principle. K
is the trace of the extrinsic curvature for the boundary 0M and h is the induced metric of
the boundary. Also, G4 is Newton’s constant in d—dimensions; for simplicity, we shall set
G4 = 1 in this work.



The upshot for our computations is that the line element of the static solutions of
interest can be cast in the following form (where 0 < ¢ < 27, 0 < 6 < /2 and del_ 4 the
unit metric on S% %, while 0 < p < 00, —00 < z < 00)

ds® = —2PAdt? 4 02 (dp® + d2?) + N PH Ay 4 20PNk o (2.2)

The solutions constructed within this ansatz are static and axisymmetric, with a symmetry
group Ry x U(1) x SO(d — 3) (where R; denotes the time translation). While in principle
it is possible to choose any kind of boundary conditions, we will only concentrate on black
hole solutions which asymptote to flat spacetime. Moreover, the coordinates in (2.9) have
a rectangular boundary and thus are suitable for numerical calculations.

A suitable combination of the Einstein equations, G} = 0, G5+ GZ =0, G:ﬁ =0 and
G5 = 0 (with ¢ an angle on Q4_4), yields the following set of equations for the functions
Uo, Uy, Us

V2Uo + (VU)? + (VUo) - (VUL) + (d — 4)(VUp) - (VU3) =0,
VUL + (VUL + (V) - (VUL) + (d = 4)(VU1) - (VU2) = 0, (2.3)
VU 4 (d — 4)(VU2)? 4 (VUy) - (VUs) + (VU,) - (VUy) — (d — 5)e? 722 =,

and
Vi — (V) - (VU) — (d — 4)(VU) - (VUp) — (d — 4)(VU;) - (V) (2.4)
+ %(d —4)(d—5) (e 72 — (VUy)?) =0,
for the metric function v, where we define
(VU) - (VV) =0,U8,V + 8.Ud.V, VU =0,U + 9:U. (2.5)

The remaining Einstein equations G2 = 0, G, — G%Z = 0 yield two constraints. Following
[[4], we note that setting Gt = G& = G5+ GZ = 0 in V,G* = 0 and V,G** = 0, we
obtain the Cauchy-Riemann relations

20. (V=9G%) + 0, (V—9(Gf — G2)) =0, 20, (V—9G?%) — 0 (V—9(G}, — G)) = 0(2.6)

Thus, the weighted constraints satisfy Laplace equations, and the constraints are fulfilled
when one of them is satisfied on the boundary and the other at a single point [14]. As we
shall see, this is the case for all configurations discussed in the next Section.

Although the Einstein equations take a simple form in terms of (U;, v), for the purposes
of this paper it is more convenient to work with a set a functions f; defined as follows?

eQV(p,z) = fl(p7z)7 62U2(p72) = f2(p7 2)7 2U3 (P f3(p7 )7 62U1(p72) = fO(p7 Z)' (27)

This leads to a line element

ds® = —fo(p, 2)dt* + fi(r,2)(dp” + d2%) + falp, 2)dy” + fa(p, 2)dQ_ys  (2.8)

2Some divergencies are avoided in this way. For example, f; — 0 would correspond to U; — —oco which

is clearly not suitable for a numerical approach.



which was used in our numerical study of the d > 5 solutions.

One might be concerned that (2.§) is too restrictive to leave room for new interesting
black hole solutions. In higher dimensions, a priori this is not the case?, and, in the
next Section, we shall present numerical evidence for the existence of nontrivial solutions
which share the basic properties of some d = 5 configurations with a nonspherical horizon
topology.

Other more general metric proposals which may describe higher dimensional black hole
solutions with a nonspherical horizon topology have been presented in [[7]. However, due

to their complexity, they will be out of our present scope.

2.2 Known solutions
2.2.1 Minkowski space-time
In d > 5 dimensions, the flat spacetime metric can be written in the form (where 0 < r < oo,
0<y<2m,0<0<7/2)
ds® = —dt* + dr* 4 r*(d6* + sin® 0dy)* + cos® 0dQ3_,), (2.9)

thus with the metric on S¢~2 written in terms of a warped product of S? and S%~*. Then,
for all dimensions, the coordinate transformation

1
r=2(p* + Y4 0= 3 arctan(p/z), (2.10)
leads to the equivalent form of (2.9)

ds? = —df? + — (dp® +d2?) + (V2 + 22 + 2) dp® + (W p? + 22 — 2)dQ3_,, (2.11)
24/ p? + 22
where 0 < p < 00, —00 < 2 < 00.
An interesting observation here concerns the value of the determinant A for the non-
conformal part of the metric! (i.e. the line element (B-§) without the (p, z)-part). One can
see that even for the simplest case of a Minkowski space-time within the parametrization

Bg), A = —p? for d = 4,5 only.
2.2.2 Schwarschild-Tangherlini black hole

The simplest example of a d > 5 nontrivial solution that can be studied within this approach
corresponds to the Schwarzschild-Tangherlini black hole. Usually this metric is written in
the form

ds®> = —f(r)dt* + f(r) " dr? + r2(d6? + sin? 0 dip? + cos? 0dQ3_ ), (2.12)

3Black holes have to be of positive Yamabe type [@] and, if stationary, they have to be axisymmetric

d.

4The choice of this determinant has been proven to be crucial in recent progress on finding new classes
of solutions [E] and also for the metric proposals in [ﬁ]



with f(r) = 1 — pu/r93. This d—dimensional static black hole solution has an isometry
group R; x SO(d —1). By a change of coordinates one can bring the metric to the desired
conformal form (R.§). The change of coordinates is

p= % sin 26 sinh G(r), z = % cos 26 cosh G(r), (2.13)

which yields

2 ! 2
dp? +d2? = %(cosh 2G(r) — cos46) <G Ef) dr® + d92> . (2.14)

By simply integrating G(r) one finds

r):2/\/g—zdr:2/7ﬁdrzlog[2di3< +\/7) |+, (2.15)

2

a—-1
where k = —d%?) log(4u) is the integration constant. And, finally we fix a = 243 73 to
match asymptotically flat space.
The transformation (R.13) simplifies drastically in d = 5

1 1/2 1
p= §sin29 (1—%) r? z = §COS29 (1—2'%) r?, (2.16)

matching the findings of [ff], and in d = 7 where
1 1/2 1
p= isin% (1— 7’_) 2, z= 5005297‘2. (2.17)

A straightforward but cumbersome computation leads to the following expression for the
Schwarzschild-Tangherlini black hole in the (p, z) coordinates

2
(d-3)/2 _ (d=3)/2 | 1)4/(d—3)
w=s <Z(dT/2+1> s 17 — Sery (@7 + ) (2.18)
( v2+1 (v2—1)2>
(U(d—s)/2 + 1)%3 (U(d—?))/2 + 1)%3

(u(v® + 1) 4 220) dp® + (1(v® +1) = 220) dQF_y,

20(v? 4+ 1) 20(v? 4+ 1)

where

1 1/2
v= (p2 + 224+ P+ V2 /(0% + 222 + 12 (p? — 22) + (p? +z2)7>> :

and P = /pt + 202 (0% — 2%) + (p? + 22)2.
Moreover, one can also show that for d = 5 these expressions reduce to those in [J].
2.3 The rod structure of black hole solutions

2.3.1 Five dimensional structure

For d = 5, the coordinates in (R.9) are the usual Weyl coordinates, while the sphere Q4_4
reduces to a single angular coordinate ¢, with 0 < ¢ < 27.



In this case, it is most convenient to choose the three functions U; as to satisfy the
condition

Z U; = log p. (2.19)

This is compatible with the vacuum Einstein equations (R.3), which for the choice (R.19)
imply also
o*U; 10U; 08U,
T T o5, T 9.2
op p Op 0z

= 0. (2.20)

One can see that (R.2() is just Laplace’s equation in a (fictious) three-dimensional flat
space with metric ds? = dp? + p?d©? 4 dz?, whose solutions are well-known.

From the other components of the Einstein equations G5 — GZ = 0 and G, =0,
we obtain the equations which determine the function v(p, z) for a given solution of the
equation (R.20)

V= —% + g (U{2 +UR+ U -U? - U — U§> , v=pU]+Us+ U}, (2.21)
where a prime denotes the derivative with respect to p and a dot denotes the derivative
with respect to z. Solutions with the ansatz (@) and with Uy, Us, Us and v satisfying the
equations (2.20), (B21)) are usually called generalized Weyl solutions [F].

This approach has proven very fruitful, a variety of physically interesting configura-
tions being discussed in the literature. They can be uniquely characterized by the boundary
conditions on the z—axis, known as the rod-structure [J, [[§, [[9]. One finds that the physi-
cally relevant solutions for U; can also be thought of as Newtonian potentials produced by
thin rods of zero thickness with linear mass density 1/2, placed on the axis of symmetry
in the auxiliary three-dimensional flat space. Then the constraint (R.19) states that these
sources must add up to give an infinite rod.

In this approach, the z—axis is divided into N intervals (called rods of the solution),
[—o0, 21], [21, 22],. . ., [2n—_1,00]. As proven in [[I§], in order to avoid curvature naked singu-
larities at p = 0, it is a necessary condition that only one of the functions fy(0, z), f2(0, 2),
f3(0, z) becomes zero for a given rod, except for isolated points between the intervals.

For the static case discussed here, a horizon corresponds to a timelike rod where
f0(0,2) = 0 while lim, ¢ fo(p, 2)/p? > 0. There are also spacelike rods corresponding to
compact directions specified by the conditions f,(0,2) = 0, lim,_,0 fa(p, 2)/p? > 0, with
a = 2,3. A semi-infinite spacelike rod corresponds to an axis of rotation, the associated
coordinate being a rotation angle. Demanding regularity of the solutions at p = 0 imposes
a periodicity 27 for both ¢ and ¢. (However, when several 1)- or ¢-rods are present, it may
be impossible to satisfy simultaneously all the periodicity conditions, see e.g. the examples
in Appendix A).

One of the main advantages of this approach is that the topology of the horizon is
automatically imposed by the rod structure. This provides a simple way to construct a
variety of solutions with nontrivial topology of the horizon (including multi-black objects).



Since (R-20) is linear, one can superpose different solutions for the same potential U;. The
nonlinear nature of the Einstein gravity manifests itself through the equation (R.4) for the
metric function v.

2.3.2 Higher dimensional structure

The central point in this approach® is that the rod structure, as defined above for the d = 5
case, can be used also for d > 5 solutions constructed within the ansatz (2.§). This fixes
the boundary conditions along the z—axis for the functions f; and thus the topology of the
horizon.

However, note that the interpretation of a rod as corresponding to a zero thickness
source with linear mass density 1/2, placed on the axis of symmetry in an auxiliary three-
dimensional flat space is no longer valid for d > 5. Also, the relation (R.19) fails to be
satisfied in this case, as one can see already for the simplest case of a Minkowski space-
time.

A crucial observation here is that, supposing the existence of a power series expansion
in p, the Einstein equations imply® the following form of the metric functions f; close to
the z-axis, valid for any d > 5

filp,2) = fio(2) + p” fia(2) + O(p°), (2.22)

where f;r(z) are solutions of a complicated set of nonlinear second order ordinary differ-
ential equations which we shall not present here. Then, similar to the d = 5 case, we
suppose that the z—axis is divided into N intervals—the rods of the solution. Except for
the isolated points between the rods, one assumes that only one of the functions fy(0, 2),
f2(0, 2), f3(0, z), becomes zero for a given rod, while the remaining functions stay finite at
p = 0 in general. (In fact, if more than one of these functions is going to zero for a given
z inside a rod, one can prove following the arguments in [[§] that we have a curvature
singularity at that point.) Again, one imposes the condition that the N intervals must add
up to give an infinite rod.
A finite timelike rod corresponds to an event horizon, where”

folp,2) = p* foa(2) + p* foa(2) + ..., filp,2) = fro(2) + PP fr2(2) + ..., (2.23)
falp,2) = fao(2) + p* fa2(2) + ..., f3(p,2) = fao(2) + p*faa(2) + ...
with lim, o p2f1/fo = c3. As we shall see in the next Subsection, this fixes the Hawking
temperature of the solutions.
For a rod in the ¢-direction, one finds the following expansion of the metric functions
as p— 0:
folp,2) = foo(2) + p*foa(2) + ..., filp,2) = fro(2) + P2 fra(2) + ..., (2.24)
fa(p,2) = p* o2 (2) + p* faa(2) + ..., fa(p, 2) = fao(2) + p* faz(2) + ...

®Some aspects of the proposal in this work can be found also in Ref. [@], which considers the numerical

construction of the five-dimensional black rings with two independent angular momenta.

5Such an expansion is also required by the regularity of the Kretschmann scalar at p = 0 (but it does
not guarantee it automatically).

7 fix(2) here should not be confused with those in (R.24).
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Figure 1. Rod structure of several static black objects in d > 5 spacetime dimensions. These
include the Schwarzschild-Tangherlini black hole (BH), the generalized black ring (GBR), the gen-
eralized black Saturn (GBS) and the generalized black di-ring (GBD). In the diagrams the thin

lines represent the z—axis and the thick lines denote the rods.

The important feature here is that the constraint equation G7, = 0 implies fi9(2)/f22(2) =
c1 > 0, i.e. a well-defined periodicity for the coordinate . The value of ¢q is not fixed
apriori and follows from the details of the solutions.

For d = 5, a similar result is found when interchanging f» and f3, i.e. for a rod in the
p-direction. The periodicity of ¢ there is arbitrary, being again fixed by the constraint
equation Gz =0, s.e. lim, p%f1/fs = c2 > 0. However, the picture is very different® for
d > 5, in which case we find

folp,z) = foo(2) + p* fo2(2) + ..., filp,2) = fr0(2) + p*fr2(2) + ... (2.25)

fo(p, 2) = fao(2) + p* fa2(2) + p' fa(2) + ..., f3(p,2) = p*fra(2) + ...,

i.e. the Einstein equations impose the following requirement for an {2—rod: lim, o P2f1/f3 =
1, which is an important new feature. As we shall argue in the Section 2.5, this condition

8Formally, this is a consequence of the presence of the (d — 5) coefficients in the eqs. (EL (E)



prevents us to construct d > 5 static black rings (or multi-Schwarzschild-Tangherlini black
holes) within the ansatz (R.§).

Thus, depending on the physical situation we consider, the boundary conditions along
the z—axis are fixed by the above relations. The obvious boundary conditions for large
p, |z| are that f; approach the Minkowski background functions (which are read from R.11):

fo(P,Z) =1, fl(paz) = Nﬁ? fz(p,Z) =V p?+ 2%+ 2, f3(p72) =V p?+ 2% — 2. (226)

This is in fact the simplest solution of the Einstein equations in d > 5 dimensions, as we
have seen already in the Section 2.2.1. There the function fs vanishes for p = 0,2 < 0,
and f3 for p = 0,z > 0, which, in the language of the Weyl formalism, corresponds to two
semi-infinite rods [—o0, 0] and [0, o).

Similar to the d = 5 case, the topology of an event horizon is fixed by the boundary
conditions satisfied by f, and f3 at the ends of the corresponding (finite) timelike rod.
For example, if either end of this rod continues with rods of different directions (¢ and
), then the event horizon has an S92 topology and (for a single horizon) the solution
is a Schwarzschild-Tangherlini black hole (see Figure 1a). A black object with S? x §9—4
topology of the horizon is a ’generalized black ring’” and has the metric function f5 vanishing
at both ends of the finite timelike rod associated with the horizon, see Figure 1b. (For d = 5,
this corresponds to the static black ring in [fJ].) One can consider as well a ’generalized
black Saturn’ combining both types of black objects above, with two different horizons
(Figure 1c). The rod structure for a solution consisting of two black holes, both of them
with 52 x S~ topology of the horizon (thus a ’generalized black diring’) is shown in Figure
1d. The basic properties of these objects are discussed in the next Section.

It is tempting to conjecture that, similar to the d = 5 case [IJ], a d > 5 solution within
the ansatz (£.§), is uniquely specified by its rod structure.

2.3.3 Physical quantities
The ADM mass M of the solutions® can be read from the asymptotic expression for the
metric function g

167 M
(@ = 2)Vaalp? + 2)@ )

Supposing we have an event horizon at p = 0 for some z; < z < 2o, the horizon metric is

—gtt:f()f\/l— 4+ (227)

given by!?
do? = £1(0,2)dz* + f2(0, 2)dyp? + f3(0,2)dQ3_,. (2.28)

Two quantities associated with the event horizon are the event horizon area Ay and the
Hawking temperature. For the metric ansatz (2.§) these are given by

Ap = AV / @ 10,250,210, ), Ty = = tim [ L4225 59)

21 C2m p—=0 p2f1(p7 Z)

9The discussion here follows the general formalism in [EL which contains also several applications for
d = 4,5 exact solutions.
10Tf there are several horizons, then one should write such an expansion for each of them.

— 10 —



where V,;_4 is the area of the unit sphere S4 % and At the periodicity of the angular
coordinate 1 on the horizon.
A solution with n different event horizons satisfies the Smarr law

M=——— 1 H AH . 2.30
( 3) k=1 ( )

Considering now the case of a space-like 1¥—rod for some 23 < z < 24, one starts by
writing the line element on this (d — 2)-dimensional surface ¥

do® = f1(0, 2)dz* + f3(0,2)dQ3_, — fo(0, 2)dt>. (2.31)

The first quantity of interest is the proper length of the rod

L= /Z4 dz+/ f1(0, 2), (2.32)

3

which, for a finite rod, differs from the coordinate distance Az = z4 — z3 (although it is
proportional to it).

All solutions in this work possess a conical singularity for (at least) a region of the
z-axis. To define a conical singularity for a rotational axis with angle ¢, one computes the
proper circumference C' around the axis and its proper radius R and defines

A 0 A
o 0 7W _ iy VIRV (2.33)
dR|p—g  1=0 Jo' \/Gppdp =0 9pp

where A1 is the period of 1. The asymptotic flatness implies Ay = 27. Then the presence
of a conical singularity is now expressed!! by means of:

. o ERT fQ(pvz)
d=2r—a=2r (1 [1)112% R (02 Z)> , (2.34)

such that 6 > 0 corresponds to a conical deficit, while § < 0 corresponds to a conical excess.
A conical deficit can be interpreted as a ‘string’ stretched along on a certain segment of
the z—axis, while a conical excess is a ‘strut’ pushing apart the rods connected to that
segment (in fact, the ‘struts’ and ‘strings’ are (d — 3)-dimensional surfaces, i.e. higher
dimensional analogues of the d = 4 cosmic strings). Also, a constant rescaling of ¢ can
be used to eliminate possible conical singularities on a given segment, but in general, once
this is fixed, there will remain conical singularities at other t-segments. For all solutions
in this work, we have prefered to set the conical singularity on a finite -rod such that our
solutions are asymptotically flat, meaning that Ay = 2x. Moreover, in the presence of a
conical singularity, the manifold M naturally factorizes as M = C, x X, where C, is the
two-dimensional conical surface p — 1 and ¥ is the remaining (d — 2)-dimensional surface,
which may be seen as the world-volume of the conical defect [2J].

"Note that, in some sence, fixing § is the analogue of computing the Hawking temperature on the
Euclidean section.

— 11 —



For practical reasons, we have found it convenient to introduce the quantity

jo_0/0Cm) (2.35)
1-46/(2m)
which has a finite range (0 — —1 for § — Z00) and measures the ’relative angular
deficit /excess’.

As argued in [P1], 23], the asymptotically flat black objects with conical singularites still
admit a thermodynamical description. Moreover, when working with the appropriate set
of thermodynamical variables, the Bekenstein-Hawking law still holds for such solutions.
The mass-energy which enters the first law of thermodynamics does not, however, coincide
with the ADM mass; it differs from the latter by the energy associated with the conical
singularity, as seen by an asymptotic, static observer.

The Ricei scalar of M, (®R, can be represented near ¥ in the following local form

B3):
(MR =R+ 2021 — a)dy, (2.36)

where R is the curvature computed in the standard way on the smooth domain M/¥% of
M. Here, 0y is the Dirac é-function, with [, fdz = [5, f. A direct integration of (2.3d)
leads to [24]

/ @R = R+ 221 — a)Area, (2.37)
M M/E
where Area is the area of X, i.e. the space-time area of the conical singularity’s world-

volume. For the metric ansatz in this work, the expression of the extensive parameter
Area is

z
Area = BVd_4/ ' dz\/fo(O,z)fl(O,z) 440, 2), (2.38)
23
B = 1/Ty being the periodicity of the Euclidean time.

In the presence of conical singularities, the solutions cannot be viewed as vacuum
solutions and there is a matter source (the struts) which supports the conical singularities.
The stress energy tensor associated with the singularity can be computed by using the
Einstein equations G;; = 87T;;. The results in [23] also show that the singular part of the
Ricci tensor has components only in the p — v plane, such that Rf = 0 for the remaining
components. It follows that the only non-vanishing components of Tij are

. 1
Tz] = _5i§(27‘- - 04)52, with (Z7]) 7& (p7 (10) (239)

A direct consequence of this result is that the conical deficit/excess as defined by (2.34),
6 = 2w — «a, corresponds to the pressure exerted by the strut. This is found by integrating
the T7-component over C,

0

pP= / T:=——. (2.40)
Y
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Moreover, as seen from (R.39), the energy density p of the matter source supporting the
conical singularity is also g = —0/87. Thus § < 0 (the case of the solutions in this work)
corresponds to a negative energy density source.

Another quantity of interest is the total energy associated with the strut as seen by
a static observer placed at infinity. This is found by integrating the T}-component over a
t = ty = constant hyper-surface,

0 Area
Eipt = — T = — = —PA, 2.41
= L T= (2.41)
where we have defined
Area
= . 2.42
5 (2.42)

Thermodynamics of a system with a conical singularity in the bulk can be approached!?
by using the path-integral formulation of quantum gravity [[3]. The first step here is to
evaluate the total tree level Euclidean action of the system. The new feature introduced
by the conical singularity is to add an extra contribution to this quantity which can be
evaluated by using the relation (R.37). Then the total action is

I:h—%A& (2.43)

where I is the usual tree level action [[J] found when neglecting the conical singularity.
As argued in [R1], the first law of thermodynamics for static vacuum solutions with a
conical singularity reads

AM = TydS + TdA, (2.44)

where A (as defined by (B.42)) is the extensive parameter which takes into account the
presence of the conical singularity and 7 = P = —§ /8 is the associated “tension”.

In a canonical ensemble, one keeps the Hawking temperature Ty and the extensive
parameter A fixed. The free energy F' is

F[Ty, Al =Tyl = M — TyS. (2.45)

Then the entropy S, mass M and tension 7 of the physical system are given by

S:—% , M=F+TgS, ngé . (2.46)
A T

This approach has been applied in [R1] for several d = 4,5 static solutions with conical
singularities in the bulk which are known in closed form, the effects of rotation being
considered in [RJ]. The results there show that S = Ay /4 in all cases, as expected.

In principle, one can use the same approach to discuss the thermodynamics of the
solutions in this work. The only complication appears for multi-black objects. For thermal
equilibrium, the individual black holes should have the same Hawking temperature. More-
over, if there are several different finite )-rods, then the corresponding tension parameters
d; should be equal.

121p fact, it is possible to define the thermodynamic quantities also with the conical singularity stretching
towards the boundary, see e.g.

— 13 -



2.4 Numerical procedure

All new solutions in this work are found within a nonperturbative approach by solving
numerically a set of four nonlinear partial differential equations. These equations have
dependence on two variables and are subject to suitable boundary conditions which follow
from the required rod structure and asymptotic flatness.

In this scheme, the input parameters provided to the solver are the positions of the
rods and the value d of the spacetime dimension. The numerical integration eventually
converges and provides an output consisting of the functions f; and their first and second
derivatives with respect to p and z. The relevant physical data (e.g. the ADM mass, the
Hawking temperature(s) etc.) are computed from this numerical output.

In practice, we have found it convenient to take

fi=fF;, (2.47)

where fi0 are some background functions'3, given by the metric functions of a d = 5
solution with some rod structure. The numerical computation is performed working with
the functions F;. The advantage of this approach 