291 research outputs found
Potential Environmental Impacts of Hydrogen-based Transportation and Power Systems
Hydrogen (H2) offers advantages as an energy carrier: minimal discharge of pollutants, production from multiple sources, increased thermodynamic efficiencies compared to fossil fuels, and reduced dependence on foreign oil. However, potential impacts from the H2 generation processes, transport and distribution of H2, and releases of H2 into the atmosphere have been proposed. The goal of this project was to analyze the effects of emissions of hydrogen, the six criteria pollutants and greenhouse gases on climate, human health, materials and structures. This project was part of a larger effort by DOE to assess the life-cycle costs and benefits and environmental impacts to inform decisions regarding future hydrogen research. Technical Approach: A modeling approach was developed and used to evaluate the potential environmental effects associated with the conversion of the on-road vehicle fleet from fossil-fuel vehicles to hydrogen fuel cell vehicles. GATOR-GCMOM was the primary tool used to predict atmospheric concentrations of gases and aerosols for selected scenarios. This model accounts for all feedbacks among major atmospheric processes based on first principles. The future scenarios and the emission rates selected for this analysis of hydrogen environmental effects are based on the scenarios developed by IPCC. The scenarios selected for the model simulations are a 2000 and 2050 A1B base cases, and a 2050 A1B case with hydrogen fuel cell vehicles (HFCVs). The hydrogen fuel cell scenario assumed conversion of 90% of fossil-fuel on-road vehicles (FFOV) in developed countries and 45% of FFOVs vehicles in other countries to HFCVs, with the H2 produced by steam-reforming of natural gas (SHFCVs). Simulations were conducted to examine the effect of converting the worldâÂÂs FFOVs to HFCVs, where the H2 is produced by wind-powered electrolysis (WHFCVs). In all scenarios a 3% leakage of H2 consumed was assumed. Two new models were developed that provide the ability to evaluate a wider range of conditions and address some of the uncertainties that exist in the evaluation of hydrogen emissions. A simplified global hydrogen cycle model that simulates hydrogen dynamics in the troposphere and stratosphere was developed. A Monte Carlo framework was developed to address hydrogen uptake variability for different types of ecosystems. Findings 1.Converting vehicles worldwide in 2050 to SHFCVs at 90% penetration in developed countries and 45% penetration in other countries is expected to reduce NOx, CO, CO2, CH4, some other organic gases, ozone, PAN, black carbon, and other particle components in the troposphere, but may increase some other organic gases, depending on emissions. Conversion to SHFCVs is also expected to cool the troposphere and warm the stratosphere, but to a lesser extent than WHFCVs. Finally, SHFCVs are expected to increase UTLS ozone while decreasing upper stratospheric ozone, but to a lesser extent than WHFCVs. 2.The predicted criteria pollutant concentrations from the GATOR-GCMOM simulations indicated that near-surface annual mean concentrations in the US are likely to increase from the 2000 base case to the 2050 A1B base case for CO2 and ozone due to the increased economic activity, but to decrease for CO, NO2, SO2, and PM10 due to improved pollution control equipment and energy efficiencies. The shift to SHFCVs in 2050 was predicted to result in decreased concentrations for all the criteria pollutants, except for SO2 and PM10. The higher predicted concentrations for SO2 and PM10 were attributed to increased emissions using the steam-reforming method to generate H2. If renewable methods such as wind-based electrolysis were used to generate H2, the emissions of SO2 and PM10 would be lower. 3.The effects on air quality, human health, ecosystem, and building structures were quantified by comparing the GATOR-GCMOM model output and accepted health and ecosystem effects levels and ambient air quality criteria. Shifting to HFCVs is expected to result in improved air quality and benefits to human health. Shifting to HFCVs is unlikely to result in damage to buildings. 4.Results are thought to be robust for larger leakage rates of H2 and for greater penetrations of HFCVs, since the controlling factor for stratospheric ozone impacts is the reduction in fossil-fuel greenhouse gases and the resulting surface cooling, which reduces water vapor emissions and stratospheric warming, which increases tropopause stability reducing water vapor transport to the stratosphere. 5.The supplemental modeling results were generally supportive of the results from the GATOR-GCMOM simulations, and recommendations for additional analyses were made. Extending the duration of the simulation to coincide with the time required for hydrogen mixing ratios to attain a steady state condition was recommended. Further evaluation of algorithms to describe hydrogen uptake in the model was also recommended
Recommended from our members
Potential Environmental Impacts of Hydrogen-based Transportation and Power Systems
Hydrogen (H2) offers advantages as an energy carrier: minimal discharge of pollutants, production from multiple sources, increased thermodynamic efficiencies compared to fossil fuels, and reduced dependence on foreign oil. However, potential impacts from the H2 generation processes, transport and distribution of H2, and releases of H2 into the atmosphere have been proposed. The goal of this project was to analyze the effects of emissions of hydrogen, the six criteria pollutants and greenhouse gases on climate, human health, materials and structures. This project was part of a larger effort by DOE to assess the life-cycle costs and benefits and environmental impacts to inform decisions regarding future hydrogen research. Technical Approach: A modeling approach was developed and used to evaluate the potential environmental effects associated with the conversion of the on-road vehicle fleet from fossil-fuel vehicles to hydrogen fuel cell vehicles. GATOR-GCMOM was the primary tool used to predict atmospheric concentrations of gases and aerosols for selected scenarios. This model accounts for all feedbacks among major atmospheric processes based on first principles. The future scenarios and the emission rates selected for this analysis of hydrogen environmental effects are based on the scenarios developed by IPCC. The scenarios selected for the model simulations are a 2000 and 2050 A1B base cases, and a 2050 A1B case with hydrogen fuel cell vehicles (HFCVs). The hydrogen fuel cell scenario assumed conversion of 90% of fossil-fuel on-road vehicles (FFOV) in developed countries and 45% of FFOVs vehicles in other countries to HFCVs, with the H2 produced by steam-reforming of natural gas (SHFCVs). Simulations were conducted to examine the effect of converting the worldâÂÂs FFOVs to HFCVs, where the H2 is produced by wind-powered electrolysis (WHFCVs). In all scenarios a 3% leakage of H2 consumed was assumed. Two new models were developed that provide the ability to evaluate a wider range of conditions and address some of the uncertainties that exist in the evaluation of hydrogen emissions. A simplified global hydrogen cycle model that simulates hydrogen dynamics in the troposphere and stratosphere was developed. A Monte Carlo framework was developed to address hydrogen uptake variability for different types of ecosystems. Findings 1.Converting vehicles worldwide in 2050 to SHFCVs at 90% penetration in developed countries and 45% penetration in other countries is expected to reduce NOx, CO, CO2, CH4, some other organic gases, ozone, PAN, black carbon, and other particle components in the troposphere, but may increase some other organic gases, depending on emissions. Conversion to SHFCVs is also expected to cool the troposphere and warm the stratosphere, but to a lesser extent than WHFCVs. Finally, SHFCVs are expected to increase UTLS ozone while decreasing upper stratospheric ozone, but to a lesser extent than WHFCVs. 2.The predicted criteria pollutant concentrations from the GATOR-GCMOM simulations indicated that near-surface annual mean concentrations in the US are likely to increase from the 2000 base case to the 2050 A1B base case for CO2 and ozone due to the increased economic activity, but to decrease for CO, NO2, SO2, and PM10 due to improved pollution control equipment and energy efficiencies. The shift to SHFCVs in 2050 was predicted to result in decreased concentrations for all the criteria pollutants, except for SO2 and PM10. The higher predicted concentrations for SO2 and PM10 were attributed to increased emissions using the steam-reforming method to generate H2. If renewable methods such as wind-based electrolysis were used to generate H2, the emissions of SO2 and PM10 would be lower. 3.The effects on air quality, human health, ecosystem, and building structures were quantified by comparing the GATOR-GCMOM model output and accepted health and ecosystem effects levels and ambient air quality criteria. Shifting to HFCVs is expected to result in improved air quality and benefits to human health. Shifting to HFCVs is unlikely to result in damage to buildings. 4.Results are thought to be robust for larger leakage rates of H2 and for greater penetrations of HFCVs, since the controlling factor for stratospheric ozone impacts is the reduction in fossil-fuel greenhouse gases and the resulting surface cooling, which reduces water vapor emissions and stratospheric warming, which increases tropopause stability reducing water vapor transport to the stratosphere. 5.The supplemental modeling results were generally supportive of the results from the GATOR-GCMOM simulations, and recommendations for additional analyses were made. Extending the duration of the simulation to coincide with the time required for hydrogen mixing ratios to attain a steady state condition was recommended. Further evaluation of algorithms to describe hydrogen uptake in the model was also recommended
Recommended from our members
New experimental limits on the Pauli forbidden transitions in C nuclei obtained with 485 days Borexino data
The Pauli exclusion principle (PEP) has been tested for nucleons () in
with the Borexino detector.The approach consists of a search for
, , and emitted in a non-Paulian transition of
1- shell nucleons to the filled 1 shell in nuclei. Due to the
extremely low background and the large mass (278 t) of the Borexino detector,
the following most stringent up-to-date experimental bounds on PEP violating
transitions of nucleons have been established:
y, y,
y,
y and y, all at 90% C.L. The corresponding upper
limits on the relative strengths for the searched non-Paulian electromagnetic,
strong and weak transitions have been estimated: , and .Comment: 9 pages, 6 figure
The clustering of galaxies in the SDSS-III Baryon Oscillation Spectroscopic Survey: RSD measurement from the LOS-dependent power spectrum of DR12 BOSS galaxies
Citation: Gil-Marin, H., Percival, W. J., Brownstein, J. R., Chuang, C. H., Grieb, J. N., Ho, S., . . . Zhao, G. B. (2016). The clustering of galaxies in the SDSS-III Baryon Oscillation Spectroscopic Survey: RSD measurement from the LOS-dependent power spectrum of DR12 BOSS galaxies. Monthly Notices of the Royal Astronomical Society, 460(4), 4188-4209. doi:10.1093/mnras/stw1096We measure and analyse the clustering of the Baryon Oscillation Spectroscopic Survey (BOSS) relative to the line of sight (LOS), for LOWZ and CMASS galaxy samples drawn from the final Data Release 12. The LOWZ sample contains 361 762 galaxies with an effective redshift of z(lowz) = 0.32, and the CMASS sample 777 202 galaxies with an effective redshift of z(cmass) = 0.57. From the power spectrum monopole and quadrupole moments around the LOS, we measure the growth of structure parameter f times the amplitude of dark matter density fluctuations sigma 8 by modelling the redshift-space distortion signal. When the geometrical Alcock-Paczynski effect is also constrained from the same data, we find joint constraints on f sigma(8), the product of the Hubble constant and the comoving sound horizon at the baryondrag epoch H(z) r(s)(z(d)), and the angular distance parameter divided by the sound horizon DA(z)/r(s)(zd). We find f(z(lowz)) sigma(8)(z(lowz)) = 0.394 +/- 0.062, D-A(zlowz)/r(s)(z(d)) = 6.35 +/- 0.19, H(z(lowz)) r(s)(z(d)) = (11.41 +/- 0.56) 103 km s(-1) for the LOWZ sample, and f( z(cmass)) sigma 8(z(cmass)) = 0.444 +/- 0.038, D-A(z(cmass))/r(s)(z(d)) = 9.42 +/- 0.15, H(z(cmass)) r(s)(z(d)) = (13.92 +/- 0.44) 103 km s-1 for the CMASS sample. We find general agreement with previous BOSS DR11 measurements. Assuming the Hubble parameter and angular distance parameter are fixed at fiducial +/- cold dark matter values, we find f( zlowz) sigma(8)( z(lowz))= 0.485 +/- 0.044 and f(z(cmass)) sigma(8)(z(cmass))= 0.436 +/- 0.022 for the LOWZ and CMASS samples, respectively
In Vivo Assessment of Parenteral Formulations of Oligo(3-Hydroxybutyric Acid) Conjugates with the Model Compound Ibuprofen
Polymer-drug conjugates have gained significant attention as pro-drugs releasing an active substance as a result of enzymatic hydrolysis in physiological environment. In this study, a conjugate of 3-hydroxybutyric acid oligomers with a carboxylic acid group-bearing model drug (ibuprofen) was evaluated in vivo as a potential pro-drug for parenteral administration. Two different formulations, an oily solution and an o/w emulsion were prepared and administered intramuscularly (IM) to rabbits in a dose corresponding to 40 mg of ibuprofen/kilogramme. The concentration of ibuprofen in blood plasma was analysed by HPLC, following solid–phase extraction and using indometacin as internal standard (detection limit, 0.05 μg/ml). No significant differences in the pharmacokinetic parameters (Cmax, Tmax, AUC) were observed between the two tested formulations of the 3-hydroxybutyric acid conjugate. In comparison to the non-conjugated drug in oily solution, the relative bioavailability of ibuprofen conjugates from oily solution, and o/w emulsion was reduced to 17% and 10%, respectively. The 3-hydroxybutyric acid formulations released the active substance over a significantly extended period of time with ibuprofen still being detectable 24 h post-injection, whereas the free compound was almost completely eliminated as early as 6 h after administration. The conjugates remained in a muscle tissue for a prolonged time and can hence be considered as sustained release systems for carboxylic acid derivatives
Pulse-Shape discrimination with the Counting Test Facility
Pulse shape discrimination (PSD) is one of the most distinctive features of
liquid scintillators. Since the introduction of the scintillation techniques in
the field of particle detection, many studies have been carried out to
characterize intrinsic properties of the most common liquid scintillator
mixtures in this respect. Several application methods and algorithms able to
achieve optimum discrimination performances have been developed. However, the
vast majority of these studies have been performed on samples of small
dimensions. The Counting Test Facility, prototype of the solar neutrino
experiment Borexino, as a 4 ton spherical scintillation detector immersed in
1000 tons of shielding water, represents a unique opportunity to extend the
small-sample PSD studies to a large-volume setup. Specifically, in this work we
consider two different liquid scintillation mixtures employed in CTF,
illustrating for both the PSD characterization results obtained either with the
processing of the scintillation waveform through the optimum Gatti's method, or
via a more conventional approach based on the charge content of the
scintillation tail. The outcomes of this study, while interesting per se, are
also of paramount importance in view of the expected Borexino detector
performances, where PSD will be an essential tool in the framework of the
background rejection strategy needed to achieve the required sensitivity to the
solar neutrino signals.Comment: 39 pages, 17 figures, submitted to Nucl. Instr. Meth.
New results on solar neutrino fluxes from 192 days of Borexino data
We report the direct measurement of the ^7Be solar neutrino signal rate
performed with the Borexino detector at the Laboratori Nazionali del Gran
Sasso. The interaction rate of the 0.862 MeV ^7Be neutrinos is
49+-3(stat)+-4(syst) counts/(day * 100ton). The hypothesis of no oscillation
for ^7Be solar neutrinos is inconsistent with our measurement at the 4sigma
level. Our result is the first direct measurement of the survival probability
for solar nu_e in the transition region between matter-enhanced and
vacuum-driven oscillations. The measurement improves the experimental
determination of the flux of ^7Be, pp, and CNO solar nu_e, and the limit on the
magnetic moment of neutrinos
The Borexino detector at the Laboratori Nazionali del Gran Sasso
Borexino, a large volume detector for low energy neutrino spectroscopy, is
currently running underground at the Laboratori Nazionali del Gran Sasso,
Italy. The main goal of the experiment is the real-time measurement of sub MeV
solar neutrinos, and particularly of the mono energetic (862 keV) Be7 electron
capture neutrinos, via neutrino-electron scattering in an ultra-pure liquid
scintillator. This paper is mostly devoted to the description of the detector
structure, the photomultipliers, the electronics, and the trigger and
calibration systems. The real performance of the detector, which always meets,
and sometimes exceeds, design expectations, is also shown. Some important
aspects of the Borexino project, i.e. the fluid handling plants, the
purification techniques and the filling procedures, are not covered in this
paper and are, or will be, published elsewhere (see Introduction and
Bibliography).Comment: 37 pages, 43 figures, to be submitted to NI
New limits on nucleon decays into invisible channels with the BOREXINO Counting Test Facility
The results of background measurements with the second version of the
BOREXINO Counting Test Facility (CTF-II), installed in the Gran Sasso
Underground Laboratory, were used to obtain limits on the instability of
nucleons, bounded in nuclei, for decays into invisible channels ():
disappearance, decays to neutrinos, etc. The approach consisted of a search for
decays of unstable nuclides resulting from and decays of parents
C, C and O nuclei in the liquid scintillator and the water
shield of the CTF. Due to the extremely low background and the large mass (4.2
ton) of the CTF detector, the most stringent (or competitive) up-to-date
experimental bounds have been established: y, y, y and y, all at 90% C.L.Comment: 22 pages, 3 figures,submitted to Phys.Lett.
Short Baseline Neutrino Oscillation Experiments
8 pages, 1 figure, presented at "NuPhys2013 - prospects in neutrino physics", Institute of Physics, London, UK, Dec. 19-20, 201
- …