12 research outputs found

    Cold, clumpy accretion onto an active supermassive black hole

    Get PDF
    Supermassive black holes in galaxy centres can grow by the accretion of gas, liberating energy that might regulate star formation on galaxy-wide scales. The nature of the gaseous fuel reservoirs that power black hole growth is nevertheless largely unconstrained by observations, and is instead routinely simplified as a smooth, spherical inflow of very hot gas. Recent theory and simulations instead predict that accretion can be dominated by a stochastic, clumpy distribution of very cold molecular clouds - a departure from the "hot mode" accretion model - although unambiguous observational support for this prediction remains elusive. Here we report observations that reveal a cold, clumpy accretion flow towards a supermassive black hole fuel reservoir in the nucleus of the Abell 2597 Brightest Cluster Galaxy (BCG), a nearby (redshift z=0.0821) giant elliptical galaxy surrounded by a dense halo of hot plasma. Under the right conditions, thermal instabilities can precipitate from this hot gas, producing a rain of cold clouds that fall toward the galaxy's centre, sustaining star formation amid a kiloparsec-scale molecular nebula that inhabits its core. The observations show that these cold clouds also fuel black hole accretion, revealing "shadows" cast by the molecular clouds as they move inward at about 300 kilometres per second towards the active supermassive black hole in the galaxy centre, which serves as a bright backlight. Corroborating evidence from prior observations of warmer atomic gas at extremely high spatial resolution, along with simple arguments based on geometry and probability, indicate that these clouds are within the innermost hundred parsecs of the black hole, and falling closer towards it

    Toxicity testing with the benthic diatom Navicula libonensis (Schoeman 1970): procedure optimisation and assessment of the species sensitivity to reference chemicals

    No full text
    Periphytic communities are good indicators of river quality due to their general sensitivity to several pollutants. The primary objective of this study was to develop and optimize an ecotoxicological testing methodology using the freshwater benthic diatom Navicula libonensis. This species was selected due to its ubiquity and suitability for use under laboratory conditions. In the most suitable test medium (Chu10) the diatom demonstrated comparable sensitivity to potassium dichromate and 3,5-dichlorophenol using growth rate as the reference parameter, with median effect concentrations (ErC50) in the same order of magnitude (0.119 and 0.799 mg L(-1)) respectively. Yield-based estimates did not confirm this pattern and potassium dichromate was one order of magnitude more toxic than 3,5-dichlorophenol. The sensitivity of N. libonensis to the reference chemicals was higher than that published in the literature for several standard planktonic microalgae. This advantage, as well as the ability to grow the species in the laboratory, supports further efforts towards the standardisation of a toxicity testing protocol. In addition, the functional role of benthic diatoms in lotic ecosystems justifies their inclusion in risk assessment test batteries to better cover an environmental compartment that has so far been neglected

    The Flowering Repressor SVP Underlies a Novel Arabidopsis thaliana QTL Interacting with the Genetic Background

    Get PDF
    The timing of flowering initiation is a fundamental trait for the adaptation of annual plants to different environments. Large amounts of intraspecific quantitative variation have been described for it among natural accessions of many species, but the molecular and evolutionary mechanisms underlying this genetic variation are mainly being determined in the model plant Arabidopsis thaliana. To find novel A. thaliana flowering QTL, we developed introgression lines from the Japanese accession Fuk, which was selected based on the substantial transgression observed in an F2 population with the reference strain Ler. Analysis of an early flowering line carrying a single Fuk introgression identified Flowering Arabidopsis QTL1 (FAQ1). We fine-mapped FAQ1 in an 11 kb genomic region containing the MADS transcription factor gene SHORT VEGETATIVE PHASE (SVP). Complementation of the early flowering phenotype of FAQ1-Fuk with a SVP-Ler transgen demonstrated that FAQ1 is SVP. We further proved by directed mutagenesis and transgenesis that a single amino acid substitution in SVP causes the loss-of-function and early flowering of Fuk allele. Analysis of a worldwide collection of accessions detected FAQ1/SVP-Fuk allele only in Asia, with the highest frequency appearing in Japan, where we could also detect a potential ancestral genotype of FAQ1/SVP-Fuk. In addition, we evaluated allelic and epistatic interactions of SVP natural alleles by analysing more than one hundred transgenic lines carrying Ler or Fuk SVP alleles in five genetic backgrounds. Quantitative analyses of these lines showed that FAQ1/SVP effects vary from large to small depending on the genetic background. These results support that the flowering repressor SVP has been recently selected in A. thaliana as a target for early flowering, and evidence the relevance of genetic interactions for the intraspecific evolution of FAQ1/SVP and flowering time. © 2013 Méndez-Vigo et al

    The role of black holes in galaxy formation and evolution

    No full text
    Virtually all massive galaxies, including our own, host central black holes ranging in mass from millions to billions of solar masses. The growth of these black holes releases vast amounts of energy that powers quasars and other weaker active galactic nuclei. A tiny fraction of this energy, if absorbed by the host galaxy, could halt star formation by heating and ejecting ambient gas. A central question in galaxy evolution is the degree to which this process has caused the decline of star formation in large elliptical galaxies, which typically have little cold gas and few young stars, unlike spiral galaxies.Comment: Nature Review 7 pages, 5 figure
    corecore