207 research outputs found
The role of microbiology and pharmacy departments in the stewardship of antibiotic prescribing in European hospitals
This observational, cross-sectional study describes the role played by clinical microbiology and pharmacy departments in the stewardship of antibiotic prescribing in European hospitals. A total of 170 acute care hospitals from 32 European countries returned a questionnaire on antibiotic policies and practices implemented in 2001. Data on antibiotic use, expressed as De.ned Daily Doses per 100 occupied bed-days (DDD/100 BD) were provided by 139 hospitals from 30 countries. A total of 124 hospitals provided both datasets. 121 (71%) of Clinical Microbiology departments and 66 (41%) of Pharmacy departments provided out of hours clinical advice. 70 (41%) of microbiology/infectious disease specialists and 28 (16%) of pharmacists visited wards on a daily basis. The majority of laboratories provided monitoring of blood cultures more than once per day and summary data of antibiotic susceptibility testing (AST) for empiric prescribing (86% and 73% respectively). Most of the key laboratory and pharmacy-led initiatives examined did not vary signi.cantly by geographical location. Hospitals from the North and West of Europe were more likely to examine blood cultures more than once daily compared with other regions (p < 0.01). Hospitals in the North were least likely routinely to report susceptibility results for restricted antibiotics compared to those in the South-East and Central/Eastern Europe (p < 0.01). Hospital wards in the North were more likely to hold antibiotic stocks (100%) compared with hospitals in the South-East which were least likely (39%) (p < 0.001). Conversely, hospital pharmacies in the North were least likely to dispense antibiotics on an individual patient basis (16%) compared with hospital pharmacies from Southern Europe (60%) (p = 0.01). Hospitals that routinely reported susceptibility results for restricted antibiotics had signi.cantly lower median total antibiotic use in 2001 (p < 0.01). Hospitals that provided prescribing advice outside normal working hours had signi.cantly higher antibiotic use compared with institutions that did not provide this service (p = 0.01). A wide range of antibiotic stewardship measures was practised in the participating hospitals in 2001, although there remains great scope for expansion of those overseen by pharmacy departments. Most hospitals had active antibiotic stewardship programmes led by specialists in infection, although there is no evidence that these were associated with reduced antibiotic consumption. There was also no evidence that pharmacy services reduced the amount of antibiotics prescribed.The ARPAC study was funded by the European Commission (project QLK2-CT-2001-00915). F.M. MacKenzie was supported by the European Study Group on Antibiotic Policies to write this manuscript
Effect of Sun and Planet-Bound Dark Matter on Planet and Satellite Dynamics in the Solar System
We apply our recent results on orbital dynamics around a mass-varying central
body to the phenomenon of accretion of Dark Matter-assumed not
self-annihilating-on the Sun and the major bodies of the solar system due to
its motion throughout the Milky Way halo. We inspect its consequences on the
orbits of the planets and their satellites over timescales of the order of the
age of the solar system. It turns out that a solar Dark Matter accretion rate
of \approx 10^-12 yr^-1, inferred from the upper limit \Delta M/M= 0.02-0.05 on
the Sun's Dark Matter content, assumed somehow accumulated during last 4.5 Gyr,
would have displaced the planets faraway by about 10^-2-10^1 au 4.5 Gyr ago.
Another consequence is that the semimajor axis of the Earth's orbit,
approximately equal to the Astronomical Unit, would undergo a secular increase
of 0.02-0.05 m yr^-1, in agreement with the latest observational determinations
of the Astronomical Unit secular increase of 0.07 +/- 0.02 m yr^-1 and 0.05 m
yr^-1. By assuming that the Sun will continue to accrete Dark Matter in the
next billions year at the same rate as in the past, the orbits of its planets
will shrink by about 10^-1-10^1 au (\approx 0.2-0.5 au for the Earth), with
consequences for their fate, especially of the inner planets. On the other
hand, lunar and planetary ephemerides set upper bounds on the secular variation
of the Sun's gravitational parameter GM which are one one order of magnitude
smaller than 10^-12 yr^-1. Dark Matter accretion on planets has, instead, less
relevant consequences for their satellites. Indeed, 4.5 Gyr ago their orbits
would have been just 10^-2-10^1 km wider than now. (Abridged)Comment: LaTex2e, 17 pages, no figures, 7 tables, 61 references. Small problem
with a reference fixed. To appear in Journal of Cosmology and Astroparticle
Physics (JCAP
Probing Kaluza-Klein Dark Matter with Neutrino Telescopes
In models in which all of the Standard Model fields live in extra universal
dimensions, the lightest Kaluza-Klein (KK) particle can be stable. Calculations
of the one-loop radiative corrections to the masses of the KK modes suggest
that the identity of the lightest KK particle (LKP) is mostly the first KK
excitation of the hypercharge gauge boson. This LKP is a viable dark matter
candidate with an ideal present-day relic abundance if its mass is moderately
large, between 600 to 1200 GeV. Such weakly interacting dark matter particles
are expected to become gravitationally trapped in large bodies, such as the
Sun, and annihilate into neutrinos or other particles that decay into
neutrinos. We calculate the annihilation rate, neutrino flux and the resulting
event rate in present and future neutrino telescopes. The relatively large mass
implies that the neutrino energy spectrum is expected to be well above the
energy threshold of AMANDA and IceCube. We find that the event rate in IceCube
is between a few to tens of events per year.Comment: 13 pages, 3 figures, LaTeX; typos fixed, version to appear in PR
What do young athletes implicitly understand about psychological skills?
One reason sport psychologists teach psychological skills is to enhance performance in sport; but the value of psychological skills for young athletes is questionable because of the qualitative and quantitative differences between children and adults in their understanding of abstract concepts such as mental skills. To teach these skills effectively to young athletes, sport psychologists need to appreciate what young athletes implicitly understand about such skills because maturational (e.g., cognitive, social) and environmental (e.g., coaches) factors can influence the progressive development of children and youth. In the present qualitative study, we explored young athletes’ (aged 10–15 years) understanding of four basic psychological skills: goal setting, mental imagery, self-talk, and relaxation. Young athletes (n = 118: 75 males and 43 females) completed an open-ended questionnaire to report their understanding of these four basic psychological skills. Compared with the older youth athletes, the younger youth athletes were less able to explain the meaning of each psychological skill. Goal setting and mental imagery were better understood than self-talk and relaxation. Based on these findings, sport psychologists should consider adapting interventions and psychoeducational programs to match young athletes’ age and developmental level
Search for Gravitational Waves Associated with Gamma-Ray Bursts Detected by Fermi and Swift during the LIGO-Virgo Run O3b
We search for gravitational-wave signals associated with gamma-ray bursts (GRBs) detected by the Fermi and Swift satellites during the second half of the third observing run of Advanced LIGO and Advanced Virgo (2019 November 1 15:00 UTC-2020 March 27 17:00 UTC). We conduct two independent searches: A generic gravitational-wave transients search to analyze 86 GRBs and an analysis to target binary mergers with at least one neutron star as short GRB progenitors for 17 events. We find no significant evidence for gravitational-wave signals associated with any of these GRBs. A weighted binomial test of the combined results finds no evidence for subthreshold gravitational-wave signals associated with this GRB ensemble either. We use several source types and signal morphologies during the searches, resulting in lower bounds on the estimated distance to each GRB. Finally, we constrain the population of low-luminosity short GRBs using results from the first to the third observing runs of Advanced LIGO and Advanced Virgo. The resulting population is in accordance with the local binary neutron star merger rate. © 2022. The Author(s). Published by the American Astronomical Society
Narrowband Searches for Continuous and Long-duration Transient Gravitational Waves from Known Pulsars in the LIGO-Virgo Third Observing Run
Isolated neutron stars that are asymmetric with respect to their spin axis are possible sources of detectable continuous gravitational waves. This paper presents a fully coherent search for such signals from eighteen pulsars in data from LIGO and Virgo's third observing run (O3). For known pulsars, efficient and sensitive matched-filter searches can be carried out if one assumes the gravitational radiation is phase-locked to the electromagnetic emission. In the search presented here, we relax this assumption and allow both the frequency and the time derivative of the frequency of the gravitational waves to vary in a small range around those inferred from electromagnetic observations. We find no evidence for continuous gravitational waves, and set upper limits on the strain amplitude for each target. These limits are more constraining for seven of the targets than the spin-down limit defined by ascribing all rotational energy loss to gravitational radiation. In an additional search, we look in O3 data for long-duration (hours-months) transient gravitational waves in the aftermath of pulsar glitches for six targets with a total of nine glitches. We report two marginal outliers from this search, but find no clear evidence for such emission either. The resulting duration-dependent strain upper limits do not surpass indirect energy constraints for any of these targets. © 2022. The Author(s). Published by the American Astronomical Society
Pre-Angioplasty Instantaneous Wave-Free Ratio Pullback Predicts Hemodynamic Outcome In Humans With Coronary Artery Disease: Primary Results of the International Multicenter iFR GRADIENT Registry.
The authors sought to evaluate the accuracy of instantaneous wave-Free Ratio (iFR) pullback measurements to predict post-percutaneous coronary intervention (PCI) physiological outcomes, and to quantify how often iFR pullback alters PCI strategy in real-world clinical settings.This article is freely available via Open Access. Please click on the Additional Link above to access the full-text via the publisher's site
The Cholecystectomy As A Day Case (CAAD) Score: A Validated Score of Preoperative Predictors of Successful Day-Case Cholecystectomy Using the CholeS Data Set
Background
Day-case surgery is associated with significant patient and cost benefits. However, only 43% of cholecystectomy patients are discharged home the same day. One hypothesis is day-case cholecystectomy rates, defined as patients discharged the same day as their operation, may be improved by better assessment of patients using standard preoperative variables.
Methods
Data were extracted from a prospectively collected data set of cholecystectomy patients from 166 UK and Irish hospitals (CholeS). Cholecystectomies performed as elective procedures were divided into main (75%) and validation (25%) data sets. Preoperative predictors were identified, and a risk score of failed day case was devised using multivariate logistic regression. Receiver operating curve analysis was used to validate the score in the validation data set.
Results
Of the 7426 elective cholecystectomies performed, 49% of these were discharged home the same day. Same-day discharge following cholecystectomy was less likely with older patients (OR 0.18, 95% CI 0.15–0.23), higher ASA scores (OR 0.19, 95% CI 0.15–0.23), complicated cholelithiasis (OR 0.38, 95% CI 0.31 to 0.48), male gender (OR 0.66, 95% CI 0.58–0.74), previous acute gallstone-related admissions (OR 0.54, 95% CI 0.48–0.60) and preoperative endoscopic intervention (OR 0.40, 95% CI 0.34–0.47). The CAAD score was developed using these variables. When applied to the validation subgroup, a CAAD score of ≤5 was associated with 80.8% successful day-case cholecystectomy compared with 19.2% associated with a CAAD score >5 (p < 0.001).
Conclusions
The CAAD score which utilises data readily available from clinic letters and electronic sources can predict same-day discharges following cholecystectomy
Search for gravitational-wave transients associated with magnetar bursts in advanced LIGO and advanced Virgo data from the third observing run
Gravitational waves are expected to be produced from neutron star oscillations associated with magnetar giant f lares and short bursts. We present the results of a search for short-duration (milliseconds to seconds) and longduration (∼100 s) transient gravitational waves from 13 magnetar short bursts observed during Advanced LIGO, Advanced Virgo, and KAGRA’s third observation run. These 13 bursts come from two magnetars, SGR1935 +2154 and SwiftJ1818.0−1607. We also include three other electromagnetic burst events detected by FermiGBM which were identified as likely coming from one or more magnetars, but they have no association with a known magnetar. No magnetar giant flares were detected during the analysis period. We find no evidence of gravitational waves associated with any of these 16 bursts. We place upper limits on the rms of the integrated incident gravitational-wave strain that reach 3.6 × 10−²³ Hz at 100 Hz for the short-duration search and 1.1 ×10−²² Hz at 450 Hz for the long-duration search. For a ringdown signal at 1590 Hz targeted by the short-duration search the limit is set to 2.3 × 10−²² Hz. Using the estimated distance to each magnetar, we derive upper limits upper limits on the emitted gravitational-wave energy of 1.5 × 1044 erg (1.0 × 1044 erg) for SGR 1935+2154 and 9.4 × 10^43 erg (1.3 × 1044 erg) for Swift J1818.0−1607, for the short-duration (long-duration) search. Assuming isotropic emission of electromagnetic radiation of the burst fluences, we constrain the ratio of gravitational-wave energy to electromagnetic energy for bursts from SGR 1935+2154 with the available fluence information. The lowest of these ratios is 4.5 × 103
- …