478 research outputs found

    Mapping spot blotch resistance genes in four barley populations

    Get PDF
    Bipolaris sorokiniana (teleomorph: Cochliobolus sativus) is the fungal pathogen responsible for spot blotch in barley (Hordeum vulgare L.) and occurs worldwide in warmer, humid growing conditions. Current Australian barley varieties are largely susceptible to this disease and attempts are being made to introduce sources of resistance from North America. In this study we have compared chromosomal locations of spot blotch resistance reactions in four North American two-rowed barley lines; the North Dakota lines ND11231-12 and ND11231-11 and the Canadian lines TR251 and WPG8412-9-2-1. Diversity Arrays Technology (DArT)-based PCR, expressed sequence tag (EST) and SSR markers have been mapped across four populations derived from crosses between susceptible parental lines and these four resistant parents to determine the location of resistance loci. Quantitative trait loci (QTL) conferring resistance to spot blotch in adult plants (APR) were detected on chromosomes 3HS and 7HS. In contrast, seedling resistance (SLR) was controlled solely by a locus on chromosome 7HS. The phenotypic variance explained by the APR QTL on 3HS was between 16 and 25% and the phenotypic variance explained by the 7HS APR QTL was between 8 and 42% across the four populations. The SLR QTL on 7HS explained between 52 to 64% of the phenotypic variance. An examination of the pedigrees of these resistance sources supports the common identity of resistance in these lines and indicates that only a limited number of major resistance loci are available in current two-rowed germplasm

    Ribosomal oxygenases are structurally conserved from prokaryotes to humans

    Get PDF
    2-Oxoglutarate (2OG)-dependent oxygenases have important roles in the regulation of gene expression via demethylation of N-methylated chromatin components1,2 and in the hydroxylation of transcription factors3 and splicing factor proteins4. Recently, 2OG-dependent oxygenases that catalyse hydroxylation of transfer RNA5,6,7 and ribosomal proteins8 have been shown to be important in translation relating to cellular growth, TH17-cell differentiation and translational accuracy9,10,11,12. The finding that ribosomal oxygenases (ROXs) occur in organisms ranging from prokaryotes to humans8 raises questions as to their structural and evolutionary relationships. In Escherichia coli, YcfD catalyses arginine hydroxylation in the ribosomal protein L16; in humans, MYC-induced nuclear antigen (MINA53; also known as MINA) and nucleolar protein 66 (NO66) catalyse histidine hydroxylation in the ribosomal proteins RPL27A and RPL8, respectively. The functional assignments of ROXs open therapeutic possibilities via either ROX inhibition or targeting of differentially modified ribosomes. Despite differences in the residue and protein selectivities of prokaryotic and eukaryotic ROXs, comparison of the crystal structures of E. coli YcfD and Rhodothermus marinus YcfD with those of human MINA53 and NO66 reveals highly conserved folds and novel dimerization modes defining a new structural subfamily of 2OG-dependent oxygenases. ROX structures with and without their substrates support their functional assignments as hydroxylases but not demethylases, and reveal how the subfamily has evolved to catalyse the hydroxylation of different residue side chains of ribosomal proteins. Comparison of ROX crystal structures with those of other JmjC-domain-containing hydroxylases, including the hypoxia-inducible factor asparaginyl hydroxylase FIH and histone Nε-methyl lysine demethylases, identifies branch points in 2OG-dependent oxygenase evolution and distinguishes between JmjC-containing hydroxylases and demethylases catalysing modifications of translational and transcriptional machinery. The structures reveal that new protein hydroxylation activities can evolve by changing the coordination position from which the iron-bound substrate-oxidizing species reacts. This coordination flexibility has probably contributed to the evolution of the wide range of reactions catalysed by oxygenases

    The effect of pyramiding Phytophthora infestans resistance genes RPi-mcd1 and RPi-ber in potato

    Get PDF
    Despite efforts to control late blight in potatoes by introducing Rpi-genes from wild species into cultivated potato, there are still concerns regarding the durability and level of resistance. Pyramiding Rpi-genes can be a solution to increase both durability and level of resistance. In this study, two resistance genes, RPi-mcd1 and RPi-ber, introgressed from the wild tuber-bearing potato species Solanum microdontum and S. berthaultii were combined in a diploid S. tuberosum population. Individual genotypes from this population were classified after four groups, carrying no Rpi-gene, with only RPi-mcd1, with only RPi-ber, and a group with the pyramided RPi-mcd1 and RPi-ber by means of tightly linked molecular markers. The levels of resistance between the groups were compared in a field experiment in 2007. The group with RPi-mcd1 showed a significant delay to reach 50% infection of the leaf area of 3 days. The group with RPi-ber showed a delay of 3 weeks. The resistance level in the pyramid group suggested an additive effect of RPi-mcd1 with RPi-ber. This suggests that potato breeding can benefit from combining individual Rpi-genes, irrespective of the weak effect of RPi-mcd1 or the strong effect of RPi-ber

    Inter-relationship of plasma markers of oxidative stress and thyroid hormones in schizophrenics

    Get PDF
    <p>Abstract</p> <p>Background</p> <p>The relationship of oxidative stress to thyroid hormones has not been studied in the schizophrenics. The present study determined the status and interrelationship of plasma markers of oxidative stress, nitric oxide and thyroid hormones in thirty (17 males and 13 females) newly diagnosed patients with acute schizophrenia before initiation of chemotherapy. Twenty five (13 males and 12 females) mentally healthy individuals served as controls. Patients and controls with history of hard drugs (including alcohol and cigarette), pre-diagnosis medications (e.g. antiparkinsonian/antipsychotic drugs), chronic infections, liver disease and diabetes mellitus were excluded from the study. Plasma levels of total antioxidant potential (TAP), total plasma peroxides (TPP), nitric oxide (NO), malondialdehyde (MDA), thyroxine (T4), tri-iodothyronine (T3) and thyroid stimulating hormone (TSH) were determined in all participants using spectrophotometric and enzyme linked immunosorbent assay (ELISA) methods respectively. Oxidative stress index (OSI) was calculated as the percent ratio of total plasma peroxides and total antioxidant potential.</p> <p>Findings</p> <p>Significantly higher plasma levels of MDA (p < 0.01), TPP (p < 0.01), OSI (p < 0.01), T3 (p < 0.01) and T4 (p < 0.05) were observed in schizophrenics when compared with the controls. The mean levels of TAP, NO and TSH were significantly lower in schizophrenics (p < 0.01) when compared with the controls. The result shows that T3 values correlate significantly with MDA (p < 0.05) and TPP (p < 0.01) in schizophrenics.</p> <p>Conclusions</p> <p>Higher level of TPP may enhance thyroid hormogenesis in schizophrenics. Adjuvant antioxidant therapy may be a novel approach in the treatment of schizophrenic patients.</p

    A Novel Dimeric Inhibitor Targeting Beta2GPI in Beta2GPI/Antibody Complexes Implicated in Antiphospholipid Syndrome

    Get PDF
    Background: b2GPI is a major antigen for autoantibodies associated with antiphospholipid syndrome (APS), an autoimmune disease characterized by thrombosis and recurrent pregnancy loss. Only the dimeric form of b2GPI generated by anti-b2GPI antibodies is pathologically important, in contrast to monomeric b2GPI which is abundant in plasma. Principal Findings: We created a dimeric inhibitor, A1-A1, to selectively target b2GPI in b2GPI/antibody complexes. To make this inhibitor, we isolated the first ligand-binding module from ApoER2 (A1) and connected two A1 modules with a flexible linker. A1-A1 interferes with two pathologically important interactions in APS, the binding of b2GPI/antibody complexes with anionic phospholipids and ApoER2. We compared the efficiency of A1-A1 to monomeric A1 for inhibition of the binding of b2GPI/antibody complexes to anionic phospholipids. We tested the inhibition of b2GPI present in human serum, b2GPI purified from human plasma and the individual domain V of b2GPI. We demonstrated that when b2GPI/antibody complexes are formed, A1-A1 is much more effective than A1 in inhibition of the binding of b2GPI to cardiolipin, regardless of the source of b2GPI. Similarly, A1-A1 strongly inhibits the binding of dimerized domain V of b2GPI to cardiolipin compared to the monomeric A1 inhibitor. In the absence of anti-b2GPI antibodies, both A1-A1 and A1 only weakly inhibit the binding of pathologically inactive monomeric b2GPI to cardiolipin. Conclusions: Our results suggest that the approach of using a dimeric inhibitor to block b2GPI in the pathologica

    Association of circulating calprotectin with lipid profile in axial spondyloarthritis

    Get PDF
    Calprotectin (CPT) is released during inflammation, also in the context of atherosclerosis. The link between CPT and the atherosclerotic process was evaluated in several diseases. However, studies in axial spondyloarthritis (axSpA), associated with a high incidence of subclinical atherosclerosis, are scarce. Therefore, we assessed the association of CPT with subclinical atherosclerosis and metabolic risk factors in axSpA. CPT serum levels were measured by enzyme-linked immunosorbent assay in 163 axSpA patients and 63 controls. Subclinical atherosclerosis was determined in patients by carotid ultrasonography (assessing the presence/absence of carotid plaques and carotid intima-media thickness [cIMT]). Data on inflammation, disease activity, lipid profile and treatment were collected to evaluate its relationship with CPT. axSpA patients evidenced lower CPT levels than controls. CPT showed no association with plaques or cIMT in axSpA. CPT and HDL-cholesterol negatively correlated, while a positive association of CPT with the atherogenic index was disclosed. Additionally, axSpA patients with C-reactive protein values at diagnosis higher than 3?mg/L displayed higher CPT levels. Our study shows no relationship between CPT and markers of subclinical atherosclerosis in axSpA. Nevertheless, it demonstrates an association of CPT with adverse lipid profiles and inflammatory biomarkers, which could further influence on the development of atherosclerosis.We wish to thank all the patients and controls that participated in this study and Begoña Ubilla for technical assistance. FG is a recipient of a Sara Borrell post-doctoral fellowship from the Instituto de Salud Carlos III (ISCIII) (Spain), co-funded by the European Social Fund (ESF, “Investing in your future”) (grant CD15/00095). SR-M is supported by funds of the RETICS Program (RIER) RD16/0012/0009 (ISCIII, co-funded by the European Regional Development Fund, ERDF). VM is supported by funds of a Miguel Servet type I programme (grant CP16/00033) (ISCIII, co-funded by ERDF). RL-M is a recipient of a Miguel Servet type I programme fellowship from the ISCIII, co-funded by the ESF (grant CP16/00033). This research did not receive any specific grant from funding agencies in the public, commercial, or not-for-profit sectors

    Global, regional, and national comparative risk assessment of 79 behavioural, environmental and occupational, and metabolic risks or clusters of risks, 1990-2015: a systematic analysis for the Global Burden of Disease Study 2015

    Get PDF
    SummaryBackground The Global Burden of Diseases, Injuries, and Risk Factors Study 2015 provides an up-to-date synthesis of the evidence for risk factor exposure and the attributable burden of disease. By providing national and subnational assessments spanning the past 25 years, this study can inform debates on the importance of addressing risks in context. Methods We used the comparative risk assessment framework developed for previous iterations of the Global Burden of Disease Study to estimate attributable deaths, disability-adjusted life-years (DALYs), and trends in exposure by age group, sex, year, and geography for 79 behavioural, environmental and occupational, and metabolic risks or clusters of risks from 1990 to 2015. This study included 388 risk-outcome pairs that met World Cancer Research Fund-defined criteria for convincing or probable evidence. We extracted relative risk and exposure estimates from randomised controlled trials, cohorts, pooled cohorts, household surveys, census data, satellite data, and other sources. We used statistical models to pool data, adjust for bias, and incorporate covariates. We developed a metric that allows comparisons of exposure across risk factors—the summary exposure value. Using the counterfactual scenario of theoretical minimum risk level, we estimated the portion of deaths and DALYs that could be attributed to a given risk. We decomposed trends in attributable burden into contributions from population growth, population age structure, risk exposure, and risk-deleted cause-specific DALY rates. We characterised risk exposure in relation to a Socio-demographic Index (SDI). Findings Between 1990 and 2015, global exposure to unsafe sanitation, household air pollution, childhood underweight, childhood stunting, and smoking each decreased by more than 25%. Global exposure for several occupational risks, high body-mass index (BMI), and drug use increased by more than 25% over the same period. All risks jointly evaluated in 2015 accounted for 57·8% (95% CI 56·6–58·8) of global deaths and 41·2% (39·8–42·8) of DALYs. In 2015, the ten largest contributors to global DALYs among Level 3 risks were high systolic blood pressure (211·8 million [192·7 million to 231·1 million] global DALYs), smoking (148·6 million [134·2 million to 163·1 million]), high fasting plasma glucose (143·1 million [125·1 million to 163·5 million]), high BMI (120·1 million [83·8 million to 158·4 million]), childhood undernutrition (113·3 million [103·9 million to 123·4 million]), ambient particulate matter (103·1 million [90·8 million to 115·1 million]), high total cholesterol (88·7 million [74·6 million to 105·7 million]), household air pollution (85·6 million [66·7 million to 106·1 million]), alcohol use (85·0 million [77·2 million to 93·0 million]), and diets high in sodium (83·0 million [49·3 million to 127·5 million]). From 1990 to 2015, attributable DALYs declined for micronutrient deficiencies, childhood undernutrition, unsafe sanitation and water, and household air pollution; reductions in risk-deleted DALY rates rather than reductions in exposure drove these declines. Rising exposure contributed to notable increases in attributable DALYs from high BMI, high fasting plasma glucose, occupational carcinogens, and drug use. Environmental risks and childhood undernutrition declined steadily with SDI; low physical activity, high BMI, and high fasting plasma glucose increased with SDI. In 119 countries, metabolic risks, such as high BMI and fasting plasma glucose, contributed the most attributable DALYs in 2015. Regionally, smoking still ranked among the leading five risk factors for attributable DALYs in 109 countries; childhood underweight and unsafe sex remained primary drivers of early death and disability in much of sub-Saharan Africa. Interpretation Declines in some key environmental risks have contributed to declines in critical infectious diseases. Some risks appear to be invariant to SDI. Increasing risks, including high BMI, high fasting plasma glucose, drug use, and some occupational exposures, contribute to rising burden from some conditions, but also provide opportunities for intervention. Some highly preventable risks, such as smoking, remain major causes of attributable DALYs, even as exposure is declining. Public policy makers need to pay attention to the risks that are increasingly major contributors to global burden. Funding Bill & Melinda Gates Foundation

    Naa50/San-dependent N-terminal acetylation of Scc1 is potentially important for sister chromatid cohesion

    Get PDF
    The gene separation anxiety (san) encodes Naa50/San, a N-terminal acetyltransferase required for chromosome segregation during mitosis. Although highly conserved among higher eukaryotes, the mitotic function of this enzyme is still poorly understood. Naa50/San was originally proposed to be required for centromeric sister chromatid cohesion in Drosophila and human cells, yet, more recently, it was also suggested to be a negative regulator of microtubule polymerization through internal acetylation of beta Tubulin. We used genetic and biochemical approaches to clarify the function of Naa50/San during development. Our work suggests that Naa50/San is required during tissue proliferation for the correct interaction between the cohesin subunits Scc1 and Smc3. Our results also suggest a working model where Naa50/San N-terminally acetylates the nascent Scc1 polypeptide, and that this co-translational modification is subsequently required for the establishment and/or maintenance of sister chromatid cohesion

    Electrical and Mechanical Ventricular Activation During Left Bundle Branch Block and Resynchronization

    Get PDF
    Cardiac resynchronization therapy (CRT) aims to treat selected heart failure patients suffering from conduction abnormalities with left bundle branch block (LBBB) as the culprit disease. LBBB remained largely underinvestigated until it became apparent that the amount of response to CRT was heterogeneous and that the therapy and underlying pathology were thus incompletely understood. In this review, current knowledge concerning activation in LBBB and during biventricular pacing will be explored and applied to current CRT practice, highlighting novel ways to better measure and treat the electrical substrate
    corecore