Abstract

Background: b2GPI is a major antigen for autoantibodies associated with antiphospholipid syndrome (APS), an autoimmune disease characterized by thrombosis and recurrent pregnancy loss. Only the dimeric form of b2GPI generated by anti-b2GPI antibodies is pathologically important, in contrast to monomeric b2GPI which is abundant in plasma. Principal Findings: We created a dimeric inhibitor, A1-A1, to selectively target b2GPI in b2GPI/antibody complexes. To make this inhibitor, we isolated the first ligand-binding module from ApoER2 (A1) and connected two A1 modules with a flexible linker. A1-A1 interferes with two pathologically important interactions in APS, the binding of b2GPI/antibody complexes with anionic phospholipids and ApoER2. We compared the efficiency of A1-A1 to monomeric A1 for inhibition of the binding of b2GPI/antibody complexes to anionic phospholipids. We tested the inhibition of b2GPI present in human serum, b2GPI purified from human plasma and the individual domain V of b2GPI. We demonstrated that when b2GPI/antibody complexes are formed, A1-A1 is much more effective than A1 in inhibition of the binding of b2GPI to cardiolipin, regardless of the source of b2GPI. Similarly, A1-A1 strongly inhibits the binding of dimerized domain V of b2GPI to cardiolipin compared to the monomeric A1 inhibitor. In the absence of anti-b2GPI antibodies, both A1-A1 and A1 only weakly inhibit the binding of pathologically inactive monomeric b2GPI to cardiolipin. Conclusions: Our results suggest that the approach of using a dimeric inhibitor to block b2GPI in the pathologica

    Similar works