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Abstract  Bipolaris sorokiniana (teleomorph: Cochliobolus sativus) is the fungal 

pathogen responsible for spot blotch in barley (Hordeum vulgare L.) and occurs 

worldwide in warmer, humid growing conditions. Current Australian barley varieties 

are largely susceptible to this disease and attempts are being made to introduce 

sources of resistance from North America. In this study we have compared 

chromosomal locations of spot blotch resistance reactions in four North American 

two-rowed barley lines; the North Dakota lines ND11231-12 and ND11231-11 and 

the Canadian lines TR251 and WPG8412-9-2-1. Diversity Arrays Technology 

(DArT)-based PCR, expressed sequence tag (EST) and SSR markers have been 

mapped across four populations derived from crosses between susceptible parental 

lines and these four resistant parents to determine the location of resistance loci. 

Quantitative trait loci (QTL) conferring resistance to spot blotch in adult plants (APR) 

were detected on chromosomes 3HS and 7HS. In contrast, seedling resistance (SLR) 

was controlled solely by a locus on chromosome 7HS. The phenotypic variance 

explained by the APR QTL on 3HS was between 16 and 25% and the phenotypic 

variance explained by the 7HS APR QTL was between 8 and 42% across the four 

populations. The SLR QTL on 7HS explained between 52 to 64% of the phenotypic 

variance. An examination of the pedigrees of these resistance sources supports the 
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common identity of resistance in these lines and indicates that only a limited number 

of major resistance loci are available in current two-rowed germplasm. 
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Introduction 

Spot blotch of barley is caused by the fungus Bipolaris sorokiniana (Sacc. in Sorok) 

Shoem. (teleomorph: Cochliobolus sativus (Ito and Kurib.) Drechsl. Ex Dastur). This 

major foliar disease occurs in the warmer and more humid growing regions of the 

world, including North and South America, Europe, Asia, Syria and Australia 

(Steffenson et al. 1996; Kumar et al. 2002; Joshi et al. 2004; Meldrum et al. 2004; 

Müller et al. 2005; Arabi and Jawhar 2007; Kuldeep et al. 2008). As the perfect state 

does not play an important role in the epidemiology of the disease in Australia, the 

imperfect state is used when referring to the pathogen throughout this paper.  

 In Australia, spot blotch of barley can lead to severe crop losses in sub-tropical areas 

of northern New South Wales and Queensland. Localized barley yield losses greater 

than 30% have been reported with an average annual loss of $1 million and potential 

annual losses of $2 million under highly favourable conditions (Murray and Brennan 

2009). Spot blotch infection in seedlings starts as dark brown-to-black spots on leaf 

sheaths and progresses from lower to upper leaves during crop development. If 

infection occurs early in the crop cycle and conditions remain favourable for disease 

development, complete defoliation is possible, resulting in severe yield reductions 

(Kumar et al. 2002). On susceptible adult plants, lesions are generally oblong with 

chlorotic margins. These often coalesce to kill large portions of the leaf, with severely 

infected leaves senescing prematurely (Steffenson 1997).  

Repeated fungicide applications can be used to control spot blotch, but the use of 

resistant cultivars offers the most economically and environmentally sound means of 

control (Fetch and Steffenson 1994). The development of resistant cultivars is, 

however, complicated by the occurrence of different pathotypes of the fungus. Knight 

et al. (2010) screened 35 Australian spot blotch isolates across 15 barley cultivars and 

identified 10 apparent pathotypes. In an earlier study a differential set consisting of 20 

lines was screened and six pathotypes were identified among 34 Australian isolates of 

the fungus (Meldrum et al. 2004). Similarly, by using three barley differentials, three 
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pathotypes were identified from 58 isolates obtained from different regions of the 

world (Zhong and Steffenson 2001) and eight virulence groups were identified in 

Canada by evaluating 127 isolates on 12 barley genotypes (Ghazvini and Tekauz 

2007). Recent studies have inferred that a simple gene-for-gene model does not fit all 

the data and that resistance may result from combinations of both qualitative major 

and quantitative minor genes (Ghazvini and Tekauz 2008; Knight et al. 2010) 

In the United States spot blotch resistance obtained from the six-rowed line ND B112 

and its derivatives has been effective for over 40 years (Steffenson et al. 1996). The 

six-rowed cultivar Morex, which includes ND B112 in its pedigree, has been used in a 

number of crosses to identify the chromosomal regions associated with resistance 

expression (Bilgic et al. 2005). Two-rowed breeding lines resistant to spot blotch have 

become available from various Canadian programs, including TR251 (Grewal et al. 

2008) and WPG8412-9-2-1 (Platz et al. 2005).  

The objective of this study was to examine the expression of seedling resistance 

(SLR) and adult plant resistance (APR) in four barley populations derived from North 

American resistance sources. Genetic maps have been constructed and markers for 

resistance loci identified in order to determine whether these different sources carry 

unique resistances that may provide a range of resistance genes for deployment in 

breeding programs. 

 

Materials and Methods 

Plant material 

Four populations were used in this study: VB9524/ND11231-12 (VB/ND-12), 

ND11231-11/WI2875-17 (ND-11/WI), TR251/Gairdner (TR/GA) and WPG8412-9-2-

1/Lindwall (WP/LI). The doubled haploid (DH) population VB/ND-12 consists of 

180 lines and was developed by Emebiri et al. (2005). ND11231-12, 

(ND7085/ND4994-15/ND7556), which shows a high level of resistance to spot 

blotch, is a two-rowed, narrow leafed sister line of the cultivar Logan (PI 592784, 

ND11231-11), which was released from the North Dakota Agricultural Experiment 

Station in 1995. The spot blotch susceptible line VB9524 (two-rowed) was developed 

by the Department of Primary Industries, Victoria, Australia, and is an advanced 

selection from the cross Arapiles/Franklin (Emebiri et al. 2005). The QTL identified 

for seedling and adult plant resistancein the DH population VB/ND-12 were validated 

using the population ND-11/WI which consisted of 85 DH lines. Spot blotch 
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resistance genes were also mapped in a TR/GA DH population consisting of 147 

lines. This population was developed by the Department of Agriculture, Western 

Australia. TR251 (TR229//AC Oxbow/ND7556) is a two-rowed barley breeding line 

from Agriculture and Agri-Food Canada (AAFC), Brandon Research Centre, Canada 

(Grewal et al. 2008). Gairdner (Onslow/Tas83-587) is a two-rowed, high yielding 

malting barley developed for the higher rainfall areas of Western Australia (Paynter et 

al. 2001). Ninety-four randomly chosen lines of a WP//LI DH population were used to 

determine whether the major QTL present in the other three populations were also 

present in this population. WPG8412-9-2-1 (Bowman/TR473//Ellice/TR451) is a two-

rowed Canadian line. Lindwall (Triumph/Grimmett) is a two-rowed barley developed 

by Queensland Primary Industries and Fisheries.  

 

Fungal preparation and inoculation 

Each population was screened with isolate SB61, which originated from a field 

epidemic in the barley variety Kaputar at Monto in Queensland in 1998. Trials were 

conducted at Redlands Research Station Cleveland, Queensland and at Grafton, New 

South Wales in 2007 only. The presence of significant extraneous inoculum was 

unlikely as both sites are distant from the main cropping areas. Spot blotch was not 

observed in any of the nurseries prior to inoculation of spreader rows with SB61. 

Inoculum was sub-cultured on starch nitrate agar and grown for 2 weeks at 25°C. Five 

mL aliquots of medium containing five drops of Tween 20 and 100 ml of milli-Q 

water were added to the fungal cultures and the conidia were gently dislodged with a 

camel hair brush. The suspension was filtered through a 400 micron mesh before the 

number of conidia per mL was determined using a Neubauer counter 

(haemocytometer). The average of 12 counts was calculated and the conidial 

suspension was diluted to a final concentration of 10,000 conidia per mL.  

 

Seedling screens 

Seedling experiments were carried out at the Hermitage Research Station, Warwick, 

Queensland in 2005 and 2006 for the VB/ND-12 population and in 2006, 2007 and 

2003 for the ND-11/WI, TR/GA and WP/LI populations, respectively. A completely 

randomized design with two replicates was employed for all seedling trials. Between 

seven and ten seeds of each line were sown at three evenly spaced sites around the 

circumference of 10 cm sterile pots containing 1:1 scrub-loam soil and mushroom 
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compost. Seedlings were raised in the glasshouse and fertilized weekly. After 

approximately 15 days, when the second leaf was fully expanded, the seedlings were 

inoculated with a conidial suspension containing 10,000 conidia/mL at 2 mL/pot 

using a Paasche air brush (H series) at 220 KPa. The plants were placed immediately 

into a dew chamber for 24 hrs at 22°C (14 hrs dark/10 hrs light). The plants were then 

transferred to a growth room (25/15°C, 12 hrs light, 60% relative humidity). 

Seedlings were bottom watered until they were rated 13 days post-inoculation. A 1-9 

scale based on lesion severity was used with 9 being the most severe/very susceptible) 

(Fetch and Steffenson 1999). The mean of the replicates was calculated and used as 

the infection response value in the QTL analysis.  

 

Adult plant screens 

Randomized field trials of the VB/ND-12 population were conducted in 2004 and 

2006 at a warm, high humidity coastal site at Redlands Research Station, Queensland. 

Trials for the WP/LI and ND-11/WI populations were conducted at this same location 

in 2003 and 2006, respectively. The TR/GA population was screened in 2007 at 

Grafton Research Station in north eastern New South Wales. Two replicates of each 

line were sown as hill plots of 10-20 seeds 0.54 m apart within rows 0.75m apart. 

Spreader rows of the highly susceptible cultivar Tallon were sown between each pair 

of datum rows. When Tallon rows were at approximately Zadoks growth stage Z32 

(stem elongation), they were artificially inoculated with a conidial suspension of 

isolate SB61 and the epidemic promoted by regular sprinkler irrigation. Assessment 

of infection response was determined on a 1-9 scale based on severity, with a score of 

9 being the most severe. Plots were scored at least twice, with the first rating taken 

after anthesis (Z75), then at 2 week intervals during the grain fill period. The mean of 

the ratings was calculated to obtain a single rating for each replicate. The replicates in 

turn were averaged to obtain the infection response value used in the QTL analysis.  

 

Seedling and adult plant trial data analysis 

Frequency histograms of host infection responses and descriptive statistics of raw 

phenotypic data were generated in Microsoft Excel. Correlations between replicates 

of each trial were calculated with SAS Enterprise Guide 4.1.  

 

Single sequence repeat (SSR) analysis 
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DNA was extracted using the Wizard
®
 Genomic DNA Purification Kit (Promega 

Corporation). Primer sequences for SSR markers were obtained from GrainGenes 

(http://wheat.pw.usda.gov/GG2/index.shtml) and a standard protocol was used to 

amplify the markers. The reaction mixture consisted of  20 ng DNA, 5 µM of each 

primer, 100 M of each dNTP, 1.5 mM MgCl2, 1x buffer (Bioline Pty Ltd., Australia) 

and 0.1 U Immolase™ DNA polymerase (Bioline Pty Ltd., Australia) in a total 

volume of 10 μl. The following polymerase chain reaction (PCR) cycle profile was 

used: 7 min at 95°C, followed by 35 cycles at 94°C for 30s, 50-60°C (depending on 

annealing temperature) for 30s and 72°C for 30s and one cycle at 72°C for 10 min. 

The amplified products were visualized using a Gel-Scan 2000™ (Corbett Life 

Sciences, Sydney, Australia).  

 

Diversity Arrays Technology (DArT) and conversion of DArT markers to PCR-based 

markers 

DNA of 94 DH lines of the TR/GA population was sent to Triticarte Pty Ltd 

(http://www.triticarte.com.au/default.html) for Diversity Arrays Technology (DArT) 

analysis (Wenzl et al. 2004).  

Three DArT markers, located in QTL regions, were converted to PCR-based markers. 

Sequences for the DArT markers were obtained from Triticarte Pty Ltd. Primer3 

version 0.4.0 (http://frodo.wi.mit.edu/cgi-bin/primer3/primer3_www.cgi) was used to 

design primers for the DArT markers. The PCR-based DArT markers were amplified 

using a standard PCR reaction as described under SSR analysis.  

 

Expressed sequence tag (EST) amplification 

Primers were designed for 4 ESTs (BF256735, BF261183, BF065489, BF474338) 

mapping close to the Rcs5 gene on chromosome 7H (Drader et al. 2009). Sequences 

of ESTs were obtained from the NCBI website (http://www.ncbi.nlm.nih.gov) and 

Primer3 version 0.4.0 (http://frodo.wi.mit.edu/cgi-bin/primer3/primer3_www.cgi) was 

used to design primers. The PCR-based EST markers were amplified using a standard 

PCR reaction as described under SSR analysis above.  

 

Linkage map construction and QTL analysis 

http://wheat.pw.usda.gov/GG2/index.shtml
http://www.triticarte.com.au/default.html
http://frodo.wi.mit.edu/cgi-bin/primer3/primer3_www.cgi
http://www.ncbi.nlm.nih.gov/
http://frodo.wi.mit.edu/cgi-bin/primer3/primer3_www.cgi
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A linkage map had previously been constructed for the VB/ND-12 population 

consisting of 270 markers (Emebiri et al. 2005) and was further curated according to 

Lehmensiek et al. (2005). For the TR/GA population a genetic linkage map was 

produced consisting of 492 DArT and 50 SSR markers. MapManager QTXb20 

(Manly et al. 2001) was used to partition DArT and SSR markers into linkage groups 

and RECORD (Van Os et al. 2005) was used to order markers within linkage groups. 

The Kosambi function was used to calculate map distances.  

Composite interval mapping was conducted with Windows QTL Cartographer version 

2.5 (Wang et al. 2007) employing model 6 with a 10 cM window and 5 cM walk 

speed. One thousand permutation tests at 5 cM intervals were conducted to determine 

significance thresholds for QTL detection.  

For the ND-11/WI and WP/LI populations no whole genome genetic map was 

produced. Rather, individual markers located in QTL regions identified in other 

populations were amplified across the populations and the single marker regression 

analysis function in MapManager QTXb20 was used to identify any significant 

marker trait associations. Map figures were produced with MapChart version 2.1 

(Voorrips 2002).  

 

Results 

Phenotypic data  

The infection responses (IRs) of parents and progeny were consistent between the 

replicates within the experimental trials as indicated by the correlation co-efficient 

(Table 1), and a mean of the replicates was used in the analysis of the data. For all 

four populations the mean IR was lower at the seedling stage than at the adult plant 

stage and the seedling data displayed a greater range of IRs to spot blotch when 

compared with the range of IRs observed under field conditions (Table1; Fig. 1). 

Progeny responses in the field trials of the VB/ND-12 and TR/GA populations were 

skewed towards susceptibility (Table 1). In the seedling trials, the resistant parents, 

ND11231-12, ND11231-11, TR251 and WPG8412-9-2-1 exhibited a low (1-3) IR 

whereas the susceptible parents displayed a high (7-8) IR to the spot blotch disease 

(Fig. 1). In comparison, the six-rowed barley line, ND B112 had seedling IR scores 

equal to or lower than the ND11231-12 and ND11231-11 lines but higher than the 

TR251 and WPG8412-9-2-1 lines (Table 1). In the field trials, the resistant parents 

exhibited an intermediate (4-5) IR whereas the susceptible parents again displayed a 
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high (7-8) IR (Fig. 1) and ND B112 had IR scores equal to or lower than the parents 

of the populations (Table 1). A number of transgressive segregants having lower IR 

scores than the resistant parent were observed in the VB/ND-12 population at both the 

seedling and adult stages and in the TR/GA population at the adult stage.  

 

QTL identification and analysis 

Whole genome genetic linkage maps were available for the VB/ND-12 and TR/GA 

populations and were used in the QTL analysis. Permutation tests indicated that 2.8 

was the critical log-likelihood (LOD) score for a QTL to be significant. QTL analysis 

of the seedling trials revealed that SLR to spot blotch is conditioned by a major QTL 

on the same region of the short arm of chromosome 7H in both populations (Table 2, 

Fig. 2), which explained 64% and 58% of the phenotypic variation in the VB/ND-12 

and TR/GA population, respectively. The marker Est3 1>2 was closest to the spot 

blotch resistance gene in the VB/ND-12 population, whereas DArT marker bpb-8660 

was closest in the TR/GA population. A minor QTL for SLR, contributed by the 

susceptible parent VB9524 and explaining 3% of the phenotypic variance was 

detected on chromosome 5HL (Table 2). This QTL was, however, not consistent 

across both trials.   

Composite interval mapping of the adult plant data identified several QTL conferring 

APR to spot blotch (Table 3). Two significant QTL contributed by the resistant 

parents were identified on chromosomes 3HS and 7HS in both the VB/ND-12 and 

TR/GA populations (Fig. 2). The amplified fragment length polymorphism (AFLP) 

marker, P13M61-168 was at the peak of the 3HS QTL in the VB/ND-12 population, 

whereas the SSR marker Bmag919 was at the QTL peak in the TR/GA population. 

The QTL in this region explained from 13% (2006) to 17% (2004) and 25% (2007) of 

the phenotypic variance in the VB/ND-12 and TR/GA population, respectively. The 

7H APR QTL mapped to the same region as the SLR QTL on 7H and explained 42% 

(both years) and 19% of the phenotypic variance in the VB/ND-12 and TR/GA 

population, respectively. Minor QTL (4% phenotypic variation each detected only in 

the 2006 trial) contributed by the susceptible parent were identified on chromosomes 

2HS and 5HS in the VB/ND-12 population (Table 3). As the QTL on chromosome 

3HS in the VB/ND-12 population was in a region consisting only of AFLP markers 

(Fig. 2), it could not be determined whether this region was in a similar location to the 

region of the QTL identified in the TR/GA population. For comparison, the same 



 9 

markers needed to be positioned in maps of both populations. Initial screens for 

polymorphisms indicated that the 3HS region of the VB/ND-12 population showed 

low polymorphism with only one SSR marker (scssr10559) out of twenty tested being 

polymorphic and the only other polymorphic markers being AFLPs. This rendered 

comparisons of QTL positions between populations very difficult. However 

successful conversion to a PCR-based marker of the DArT marker bpb-3865, which 

flanked the resistance locus in the TR/GA population, enabled this comparison to be 

made. The converted marker was dominant in the VB/ND-12 population producing a 

240 base pair (bp) band with the ND11231-12 parent only (Table 4). This marker was 

mapped 0.6 cM distal to AFLP marker P13M61-168 (Fig. 3). Re-analysis of the QTL 

indicated that bpb-3865 was the closest marker characterised to the resistance locus 

on chromosome 3H. 

Genetic linkage maps were not available for the ND-11/WI and WP/LI populations, 

therefore a single marker regression approach was undertaken to determine whether 

the major resistance genes on chromosome 3H and 7H identified in the VB/ND-12 

and TR/GA population could also be identified in these populations. As the DArT 

markers bpb-8660 and bpb-5172 were closest to the 7HS QTL in the TR/GA 

population (Fig. 2), these DArT markers were also converted to PCR-based markers 

(Table 4). The converted bpb-8660 marker was only polymorphic in the TR/GA and 

WP/LI populations and amplified a dominant 220 bp band on DNA from Gairdner 

and Lindwall. The converted DArT marker bpb-5172 was not polymorphic in either 

of the ND-11/WI and WP/LI populations. ESTs identified by Drader et al. (2009) to 

be close to the spot blotch resistance gene on 7HS were also converted to PCR-based 

markers and screened across the parents of the four populations (Table 4). Of the 4 

converted EST markers only BF256735 was polymorphic in all four populations.   

One marker (bpb-3865) in the 3HS QTL region and four markers (EBmag794, 

HVM4, BF256735 and EBmac603) in the 7HS QTL region were polymorphic in the 

ND-11/WI population and were amplified across all lines of this population. Single 
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marker regression analysis confirmed the SLR QTL on chromosome 7HS with a 

phenotypic variance explained of 62% (Table 2) and the APR QTL on 3H with a 

phenotypic variance explained of 21% (Table 3). The 7HS markers were suggestive 

of an association with APR (LOD = 1.8; Table 3).  

Six markers in the 3HS QTL region (bpb-3865, Bmag919, GBM1159, 

HVGLTP4X3D0001, HvLTTP and EBmac705) and four markers (HVM4, 

BF256735, bpb-8660 and EBmac603) in the 7HS QTL region were polymorphic in 

the WP/LI population and were used in the single marker regression analysis. The 

analysis indicated that the 7HS QTL was also highly significant in this population, 

with the closest marker, EBmac603, explaining 52% of the phenotypic variance for 

SLR resistance (Table 2; Fig. 3). A significant association between the markers on 

3HS and APR was observed, with marker GBM1159 explaining 15% of the 

phenotypic variance (Table 3; Fig. 3). A suggestive association (LOD 2.2) was 

observed with the markers on 7HS and APR, explaining 10% of the phenotypic 

variance (Table 3; Fig. 3).  

 

Discussion 

This study has identified QTL that condition resistance to spot blotch at both the 

seedling and adult-plant stages of barley development in four independent mapping 

populations. While some QTL are only effective in field tests of adult plants, other 

QTL appear effective throughout the life of the plant. This situation mirrors that 

observed in resistance of barley to the net blotch (net form of Pyrenophora teres) 

pathogen (Lehmensiek et al. 2007). QTL analysis identified a highly significant SLR 

QTL on chromosome 7HS in the VB/ND-12, ND-11/WI, TR/GA and WP/LI 

populations. Based on close linkage to EST marker BF256735, located on a 2.8 cM 
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segment containing the Rcs5 gene (Drader et al. 2009), this 7HS QTL is also closely 

co-incident with the Rcs5 gene. In North Dakota, the Rcs5 gene was significant in the 

expression of seedling resistance to B. sorokiniana (C. sativus) in three DH 

populations derived from the resistant source Morex and in a TR306/Harrington 

population with TR306 as the resistant source (Fig. 4)(Bilgic et al. 2005).  

A significant SLR QTL, contributed by VB9524, was detected on chromosome 5HL 

in the VB/ND-12 population. The detection of a significant resistant QTL from the 

susceptible parent is consistent with the observation of transgressive segregants in this 

population (Fig. 1). Even though this QTL only explained 3% of the phenotypic 

variance and was detected in only one seedling trial, it is in a region where a minor 

APR QTL has previously been identified by Bilgic et al. (2005) (Fig. 4). 

Significantly, Knight et al. (2010) observed that VB9524 showed intermediate 

seedling reactions to the majority of B. sorokiniana isolates screened across it, 

suggesting the presence of at least one minor gene for resistance.  

A region on the short arm of chromosome 3H was a major contributor to the 

expression of adult plant resistance, accounting for 13 to 25% of the phenotypic 

variance. This region on 3HS has previously been reported for spot blotch resistance 

in the cultivar Bowman and a minor QTL in this region was identified in Steptoe (Fig. 

4) (Bilgic et al. 2005; Bilgic et al. 2006). A major spot blotch resistance gene was also 

detected on 3HS in the Dicktoo/Morex population (Bilgic et al. 2005). The placement 

of the QTL on the consensus map however, suggests that this QTL may be in a 

different region (Fig. 4) of 3HS. Amplification of polymorphic markers in these 

regions common to both populations is required to decide this issue.  

The APR QTL on 7HS was located in the same region as the major seedling 

resistance QTL and the Rcs5 gene. Even though this QTL was present in all 
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populations, it was only significant in the VB/ND-12 and TR/GA populations, while it 

was rated as statistically suggestive in the other two populations. The Rcs5 gene 

region has been reported for the field expression of spot blotch resistance in diverse 

DH populations in North Dakota and it was also observed that it explained varied 

levels of the phenotypic response observed in the different populations (Fig. 4) 

(Steffenson et al. 1996; Bilgic et al. 2005). Hence while the Rcs5 region is the 

principal (and often sole) contributor to seedling resistance in glasshouse tests, it is 

perhaps prone to environmental interactions and/or influenced by genetic background 

in adult plants under field conditions. 

Two minor QTL for adult plant resistance were identified in the VB/ND-12 

population on chromosomes 2HS and 5HS, which were contributed by the susceptible 

parent VB9524. The 2HS QTL is in a similar region to a minor QTL identified for 

adult plant resistance in the Steptoe/Morex population (Fig. 4) (Bilgic et al. 2005). 

Neither the 2HS nor 5HS QTL were consistently detected in both trial years and 

require further investigation in a range of environments and backgrounds to determine 

the significance of their contribution.  

This study has demonstrated the usefulness of sequenced DArT makers as a resource 

for rapid development of PCR-based markers for routine screening of specific 

regions. Due to low levels of polymorphism observed in the 3HS region in the 

VB/ND-12 population, only one SSR marker was available for marker-assisted 

selection (MAS). As a result, a DArT marker associated with spot blotch resistance in 

the same region in the TR/GA population was successfully converted to a PCR-based 

marker and mapped in the VB/ND-12 population. Two DArT markers on 7HS were 

also converted to PCR-based markers, one of which amplified a fragment in the 

susceptible parents of populations TR/GA and WP/LI.  
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Molecular markers for use in MAS are most effective for breeding programs if they 

can consistently identify trait-linked loci within diverse populations. Therefore it is 

important to validate QTL within several genetic backgrounds. Here we have 

illustrated that the major QTL on 3HS and 7HS are consistently associated with spot 

blotch resistance in four independent but related populations. The markers associated 

with these loci might prove very useful for selection of spot blotch resistance within 

Australian and international barley breeding programs. At the same time, this study 

indicates that several North American two-rowed barley lines introduced into 

Australia carry the same two resistance loci, located on 3HS and 7HS (Rcs5 gene 

region). Indeed a review of the international literature, as summarized in Fig. 4, 

indicates that the only other loci identified to date which confer major effects on 

phenotypic variation for resistance are located on 1HS and on 2HS. Therefore, current 

efforts (Steffenson et al. 2008) to source new resistances from wild cereal species 

should be encouraged. 

The resistance to spot blotch infection in ND11231-12 (ND7085/ND4994-

15/ND7556) can be traced back through the two-rowed line ND7556 [PI 643244, 

Norbert//ND4856/M37] to the six-rowed breeding line M37 (Manker/Karl//M18) and 

through the two-rowed line ND4856 [PI 643227, Klages//H316/ND B130] to ND 

B112, which carries a high level of spot blotch resistance. A second parent ND4994-

15 [PI 643230, Klages//Fergus/Nordic/3/ND1156/4/Hector], a sister line of Bowman 

(PI 483237), also traces back to ND B112 via six-rowed lines, Nordic and ND1156. 

TR251 (TR229//AC Oxbow/ND7556) is related to these ND lines since ND11231-12, 

ND11231-11 and TR251 are thought to have inherited their spot blotch resistance 

genes from ND7556. WPG8412-9-2-1 (Bowman/TR473/Ellice/TR451) probably 

derived its resistance genes from Bowman. Thus the resistant lines used in this study 
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and currently being introgressed into Australian germplasm have related pedigrees 

and may share a common spot blotch resistance source, as indicated by QTL analysis. 

In the future, enhanced spot blotch disease pressure is expected in some barley 

growing regions in Australia as a result of changing climate and rainfall patterns. 

Additional and independent sources of resistance, such as the 1HS and 2HS genes 

detected in Calicuchima-sib (Biligic et al. 2006), should also be recruited into local 

germplasm, to enhance the effectiveness and durability of resistance in the next 

generation of barley cultivars.  
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Table 1 Descriptive statistics of the four populations, VB/ND*12, ND*11/WI, 

TR/GA and WP/LI 

 

Table 2 Summary of QTL associated with spot blotch seedling resistance in four DH 

populations VB/ND*12, TR/GA, ND*11/WI and WP/LI 

 

Table 3  Summary of QTL associated with spot blotch adult plant resistance in four 

DH populations  

 

Table 4  Primer sequences of PCR-based DArT and EST markers 
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Fig. 1 Frequency of infection responses to spot blotch disease at the seedling (A) and 

adult plant (B) stage for the VB/ND-12, ND-11/WI, TR/GA, WP/LI populations. 

Mean parental scores are indicated by arrows 

 

Fig. 2 Genetic linkage map of chromosomes 3H and 7H of the VB/ND-12 and 

TR/GA populations indicating locations of seedling resistance (SLR) and adult plant 

resistance (APR) QTL. Distances (cM) are indicated on the far left side. Markers are 

given on the left and QTL intervals are indicated by bars on the right. The marker 

closest to the QTL peak is indicated by the perpendicular mark on the QTL interval.  

 

Fig. 3 Enlarged maps of chromosomes 3H and 7H of the VB/ND-12, TR/GA, ND-

11/WI, WP/LI populations. Markers in common are connected by lines. Markers 

showing the highest association with spot blotch resistance are underlined 

 

Fig.  4 Locations of spot blotch resistance QTL identified to date based on consensus 

map by Wenzl et al (2006). Some markers on the original map have been removed for 

display purposes. Markers are listed on the left and QTL are indicated on the right. 

SLR QTL intervals are indicated by white bars, APR QTL intervals are indicated by 

black bars. QTL names denoting: reference for QTL.the population(^ = resistance 

donor).the percentage phenotypic variance explained [CA=Calcuchima-sib; 

BO=Bowman; ST=Steptoe; MO=Morex, DI=Dicktoo; HA=Harrington; TR=TR306; 

Bovill10 refers to this publication]. Map distance in cM is given by the ruler on the 

left side of the figure  
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Table 1  

Trial 
*
N 

#
Min 

#
Max 

#
Mean 

#
Std. 

Dev. #Skewness 

 

^r 

€
NDB112 

IR 

VB/ND-12 SLR05 180 2.0 9.0 6.07 1.74 -0.276 0.8 4.0 

VB/ND-12 SLR06 149 2.0 9.0 5.85 2.14 -0.305 0.8 3.5 

VB/ND-12 APR04 180 3.5 8.5 6.62 1.08 -0.580 0.9 3.0 

VB/ND-12 APR06 180 3.8 8.3 6.46 1.01 -0.766 0.8 2.0 

ND-11/WI SLR06 83 2.0 9.0 6.11 2.17 -0.276 0.9 3.0 

ND-11/WI APR06 84 5.3 8.0 6.67 0.72 -0.213 0.6 4.0 

TR/GA SLR07 134 2.0 9.0 5.16 1.78 -0.121 0.8 2.5 

TR/GA APR07 133 3.3 8.3 6.27 1.09 -0.553 0.7 5.5 

WP/LI SLR03 94 2.0 8.5 5.54 1.73 -0.226 0.9 3.0 

WP/LI APR03 94 4.0 8.0 6.09 0.87 -0.242 0.5 3.5 

*Number of lines evaluated 

# Minimum, maximum, mean, standard deviation and skewness for spot blotch 

infection response scores evaluated using a 1 to 9 scale at the seedling (SLR) and adult 

plant stage (APR), with a score of 9 being the most severe  

^r Correlation co-efficient (P<0.0001) indicating correlation between replicates of trials 
€
Infection response scores for ND B112 

 

 

Table 2  

Population Chromo-

some 

LOD 

score (trial) 

Phenotypic 

  variation (%) 

Donor Closest  

marker 

VB/ND-12 7HS 32.9 (2005) 

43.1 (2006) 

64 

64 

ND 

ND 

EST31>2 

 5HL   3.6 (2006)   3 VB P22M50-304 

TR/GA 7HS 27.5 58 TR bpb-8660 

ND-11/WI 7HS 15.4 62 ND EBmac603 

WP/LI 7HS 18.4 52 WP EBmac603 
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Table 3  

 

Table 4   
 

Chromo-

some 
Primer name Sequence 

Size 

(base pairs) 

3H bpb-3865 forward 5’-CTGACAATCACGCAGGAAGA 240 

 bpb-3865 reverse 5’-TGGCAGGGTTGACCTTAAAC  

7H bpb-8660 forward 5’-GCAATATTTTGCGGAGCTGT 210 

 bpb-8660 reverse 5’-AGCCTGAGGCAGAGGTAGTG  

7H bpb-5172 forward 5’-AATACGGCGGGATATGATGA 174 

 bpb-5172 reverse 5’-GCTTTCGGTCTCACTCGAAC  

7H BF256735 forward  5’- CAAAACAGAGCGTCTGGTCA 240 

 BF256735 reverse 5’- TACCGCAAATACATGCCAAA  

7H BF261183 forward 5’-TCATGTTTGGAATGGAGCTG 210 

 BF261183 reverse 5’-GATGCATGAGCAACCAAAGA  

7H BF065489 forward 5’- GGTTTGTCAAGGATGGTGCT 224 

 BF065489 reverse 5’- GGAACGGAGGGAGTACATGA  

7H BF474338 forward 5’- AGAATACCGCTTCGACGAGA 174 

 BF474338 reverse 5’- GCCCACTGCCTACGATACAC  

    

    

    

Population Chromo-

some 

LOD 

score (trial) 

Phenotypic 

  variation (%) 

Donor Closest  

marker 

VB/ND-12 2HS   3.3 (2006)   4 VB MWG64 

 3HS 17.0 (2004) 

11.3 (2006) 

17 

13 

ND 

ND 

P13M61-168/bpb-3865 

P13M61-168/bpb-3865 

 5HS   3.8 (2006)   4 VB P11M47-122 

 7HS 33.4 (2004) 

24.8 (2006) 

42 

42 

ND 

ND 

Est31>2 

Est31>2 

TR/GA 3HS 15.3 25 TR Bmag919 

 7HS 12.2 19 TR bpb-8660 

ND-11/WI 3HS   4.3 21 ND bpb-3865 

 7HS   1.3   8 ND EBmag794 

WP/LI 3HS   3.4 16 WP GBM1159 

 7HS   2.2 10 WP bpb-8660/BF256735 
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Fig. 2  
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Fig.  4  
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Fig. 4 continued 
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