23 research outputs found
Perspectives and Integration in SOLAS Science
Why a chapter on Perspectives and Integration in SOLAS Science in this book? SOLAS science by its nature deals with interactions that occur: across a wide spectrum of time and space scales, involve gases and particles, between the ocean and the atmosphere, across many disciplines including chemistry, biology, optics, physics, mathematics, computing, socio-economics and consequently interactions between many different scientists and across scientific generations. This chapter provides a guide through the remarkable diversity of cross-cutting approaches and tools in the gigantic puzzle of the SOLAS realm.
Here we overview the existing prime components of atmospheric and oceanic observing systems, with the acquisition of oceanâatmosphere observables either from in situ or from satellites, the rich hierarchy of models to test our knowledge of Earth System functioning, and the tremendous efforts accomplished over the last decade within the COST Action 735 and SOLAS Integration project frameworks to understand, as best we can, the current physical and biogeochemical state of the atmosphere and ocean commons. A few SOLAS integrative studies illustrate the full meaning of interactions, paving the way for even tighter connections between thematic fields. Ultimately, SOLAS research will also develop with an enhanced consideration of societal demand while preserving fundamental research coherency.
The exchange of energy, gases and particles across the air-sea interface is controlled by a variety of biological, chemical and physical processes that operate across broad spatial and temporal scales. These processes influence the composition, biogeochemical and chemical properties of both the oceanic and atmospheric boundary layers and ultimately shape the Earth system response to climate and environmental change, as detailed in the previous four chapters. In this cross-cutting chapter we present some of the SOLAS achievements over the last decade in terms of integration, upscaling observational information from process-oriented studies and expeditionary research with key tools such as remote sensing and modelling.
Here we do not pretend to encompass the entire legacy of SOLAS efforts but rather offer a selective view of some of the major integrative SOLAS studies that combined available pieces of the immense jigsaw puzzle. These include, for instance, COST efforts to build up global climatologies of SOLAS relevant parameters such as dimethyl sulphide, interconnection between volcanic ash and ecosystem response in the eastern subarctic North Pacific, optimal strategy to derive basin-scale CO2 uptake with good precision, or significant reduction of the uncertainties in sea-salt aerosol source functions. Predicting the future trajectory of Earthâs climate and habitability is the main task ahead. Some possible routes for the SOLAS scientific community to reach this overarching goal conclude the chapter
Introduction to the special issue on the statistical mechanics of climate
We introduce the special issue on the Statistical Mechanics of Climate by presenting an informal discussion of some theoretical aspects of climate dynamics that make it a topic of great interest for mathematicians and theoretical physicists. In particular, we briefly discuss its nonequilibrium and multiscale properties, the relationship between natural climate variability and climate change, the different regimes of climate response to perturbations, and critical transitions
Effect of exercise on knee joint contact forces in people following medial partial meniscectomy: A secondary analysis of a randomised controlled trial
BACKGROUND: Arthroscopic partial meniscectomy may cause knee osteoarthritis, which may be related to altered joint loading. Previous research has failed to demonstrate that exercise can reduce medial compartment knee loads following meniscectomy but has not considered muscular loading in their estimates. RESEARCH QUESTION: What is the effect of exercise compared to no intervention on peak medial tibiofemoral joint contact force during walking using an electromyogram-driven neuromusculoskeletal model, following medial arthroscopic partial meniscectomy? METHODS: This is a secondary analysis of a randomized controlled trial (RCT). 41 participants aged between 30-50 years with medial arthroscopic partial meniscectomy within the past 3-12 months, were randomly allocated to either a 12-week, home-based, physiotherapist-guided exercise program or to no exercise (control group). Three-dimensional lower-body motion, ground reaction forces, and surface electromyograms from eight lower-limb muscles were acquired during self-selected normal- and fast-paced walking at baseline and follow-up. An electromyogram-driven neuromusculoskeletal model estimated medial compartment contact forces (body weight). Linear regression models evaluated between-group differences (mean difference (95% CI)). RESULTS: There were no significant between-group differences in the change (follow-up minus baseline) in first peak medial contact force during self-selected normal- or fast-paced walking (0.07 (-0.08 to 0.23), P = 0.34 and 0.01 (-0.19 to 0.22), P = 0.89 respectively). No significant between-group difference was found for change in second peak medial contact force during normal- or fast-paced walking (0.09 (-0.09 to 0.28), P = 0.31 and 0.02 (-0.17 to 0.22), P = 0.81 respectively). At the individual level, variability was observed for changes in first (range -26.2% to +31.7%) and second (range -46.5% to +59.9%) peak tibiofemoral contact force. SIGNIFICANCE: This is the first study to apply electromyogram-driven neuromusculoskeletal modelling to an exercise intervention in a RCT. While our results suggest that a 12-week exercise program does not alter peak medial knee loads after meniscectomy, within-participant variability suggests individual-specific muscle activation patterns that warrant further investigation
The role of networks in transforming Australian agriculture
It has been argued that major, purposeful action often resulting in significant changes in structure or function, known as transformational adaptation, is required in some areas of the agricultural sector to adapt to climate change and other driving factors. Yet there is limited understanding of what factors instigate and facilitate this scale of change. From a social science perspective, one key question remains: to what extent do agribusinesses need social capital to plan and implement large-scale, transformational adaptation options, compared with incremental-scale adaptations? Data drawn from Australian primary industries found that those undertaking transformational change had more far-reaching information and knowledge network connections yet less extensive social links to family, friends and colleagues. These findings demonstrate that strong access to knowledge and weak social ties increases the ability to facilitate action that differs from established social norms, hence empowering transformational adaptors to plan and implement novel strategies and options
Temperature stabilization, ocean heat uptake and radiative forcing overshoot profiles
Political leaders in numerous nations argue for an upper limit of the global average surface temperature of 2 K above the pre-industrial level, in order to attempt to avoid the most serious impacts of climate change. This paper analyzes what this limit implies in terms of radiative forcing, emissions pathways and abatement costs, for a range of assumptions on rate of ocean heat uptake and climate sensitivity. The primary aim is to analyze the importance of ocean heat uptake for radiative forcing pathways that temporarily overshoot the long-run stabilization forcing, yet keep the temperature increase at or below the 2 K limit. In order to generate such pathways, an integrated climate-economy model, MiMiC, is used, in which the emissions pathways generated represent the least-cost solution of stabilizing the global average surface temperature at 2 K above the pre-industrial level. We find that the level of overshoot can be substantial. For example, the level of overshoot in radiative forcing in 2100 ranges from about 0.2 to 1 W/m2, where the value depends strongly and positively on the effective diffusivity of heat in the oceans. Measured in relative terms, the level of radiative forcing overshoot above its longrun equilibrium level in 2100 is 20% to 60% for high values of climate sensitivity (i.e., about 4.5 K) and 8% to 30% for low values of climate sensitivity (i.e., about 2 K). In addition, for cases in which the radiative forcing level can be directly stabilized at the equilibrium level associated with a specific climate sensitivity and the 2 K limit, the net present value abatement cost is roughly cut by half if overshoot pathways are considered instead of stabilization of radiative forcing at the equilibrium level without an overshoot
Consequences of 21st century policy for multi-millennial climate and sea-level change
Most of the policy debate surrounding the actions needed to mitigate and adapt to anthropogenic climate change has been framed by observations of the past 150 years and climate and sea-level projections for the twenty-first century. The focus on this 250-year window, however, obscures some of the most profound problems associated with climate change. Here, we argue that the twentieth and twenty-first centuries, a period during which the overwhelming majority of human-caused carbon emissions are likely to occur, need to be placed into a long-term context, including the past 20 millennia, when the last Ice Age ended and human civilization developed, and the next 10 millennia, over which time the projected impacts of anthropogenic climate change will grow and persist. This long-term perspective illustrates that policy decisions made in the next few years to decades will have profound impacts on global climate, ecosystems, and human societies â not just for this century, but for the next ten millennia and beyond