40 research outputs found

    Ribonucleoprotein Particles Containing Non-Coding Y RNAs, Ro60, La and Nucleolin Are Not Required for Y RNA Function in DNA Replication

    Get PDF
    BACKGROUND: Ro ribonucleoprotein particles (Ro RNPs) consist of a non-coding Y RNA bound by Ro60, La and possibly other proteins. The physiological function of Ro RNPs is controversial as divergent functions have been reported for its different constituents. We have recently shown that Y RNAs are essential for the initiation of mammalian chromosomal DNA replication, whereas Ro RNPs are implicated in RNA stability and RNA quality control. Therefore, we investigate here the functional consequences of RNP formation between Ro60, La and nucleolin proteins with hY RNAs for human chromosomal DNA replication. METHODOLOGY/PRINCIPAL FINDINGS: We first immunoprecipitated Ro60, La and nucleolin together with associated hY RNAs from HeLa cytosolic cell extract, and analysed the protein and RNA compositions of these precipitated RNPs by Western blotting and quantitative RT-PCR. We found that Y RNAs exist in several RNP complexes. One RNP comprises Ro60, La and hY RNA, and a different RNP comprises nucleolin and hY RNA. In addition about 50% of the Y RNAs in the extract are present outside of these two RNPs. Next, we immunodepleted these RNP complexes from the cytosolic extract and tested the ability of the depleted extracts to reconstitute DNA replication in a human cell-free system. We found that depletion of these RNP complexes from the cytosolic extract does not inhibit DNA replication in vitro. Finally, we tested if an excess of recombinant pure Ro or La protein inhibits Y RNA-dependent DNA replication in this cell-free system. We found that Ro60 and La proteins do not inhibit DNA replication in vitro. CONCLUSIONS/SIGNIFICANCE: We conclude that RNPs containing hY RNAs and Ro60, La or nucleolin are not required for the function of hY RNAs in chromosomal DNA replication in a human cell-free system, which can be mediated by Y RNAs outside of these RNPs. These data suggest that Y RNAs can support different cellular functions depending on associated proteins

    Randomised phase II study of ASA404 combined with carboplatin and paclitaxel in previously untreated advanced non-small cell lung cancer

    Get PDF
    ASA404 (5,6-dimethylxanthenone-4-acetic acid or DMXAA) is a small-molecule tumour-vascular disrupting agent (Tumour-VDA). This randomised phase II study evaluated ASA404 plus standard therapy of carboplatin and paclitaxel in patients with histologically confirmed stage IIIb or IV non-small cell lung cancer (NSCLC) not previously treated with chemotherapy. Patients were randomised to receive ⩽6 cycles of carboplatin area under the plasma concentration–time curve 6 mg ml−1 min and paclitaxel 175 mg m−2 (CP, n=36) or standard therapy plus ASA404 1200 mg m−2 (ASA404-CP, n=37). There was little change in the systemic exposure of either total or free carboplatin or paclitaxel on addition of ASA404. Safety profiles were similar and manageable in both groups, with most adverse effects attributed to standard therapy. Tumour response rate (31 vs 22%), median time to tumour progression (5.4 vs 4.4 months) and median survival (14.0 vs 8.8 months, hazard ratio 0.73, 95% CI 0.39, 1.38) were improved in the ASA404 combination group compared with the standard therapy group. In conclusion, this study establishes the feasibility of combining ASA404 with carboplatin and paclitaxel in patients with previously untreated, advanced NSCLC, demonstrating a manageable safety profile and lack of adverse pharmacokinetic interactions. The results indicate that there may be a benefit associated with ASA404, but this needs to be evaluated in a larger trial

    Noncoding human Y RNAs are overexpressed in tumours and required for cell proliferation

    Get PDF
    Noncoding Y RNAs have recently been identified as essential factors for chromosomal DNA replication in human cell nuclei. Here, we investigate the expression of human Y RNAs in tumours and test their requirement for cell proliferation. Relative expression levels of all four human Y RNAs (hY1, hY3, hY4 and hY5 RNA) were determined by quantitative RT–PCR in extracts from human solid tumours, corresponding nonmalignant normal tissues and derived cultured cells. On average, all four hY RNAs are significantly overexpressed in solid tumours between 4- and 13-fold, compared to the corresponding normal tissues. In particular, hY1 and hY3 RNAs are overexpressed in carcinomas (and adenocarcinomas) of the bladder, cervix, colon, kidney, lung and prostate with extremely high statistical significance (ANOVA, between groups, P<10e-22). A functional requirement of all four hY RNAs for cell proliferation was investigated in a systematic survey for loss-of-function by RNA interference (RNAi). Degradation of hY1 and hY3 RNAs in human cell lines resulted in a significant cytostatic inhibition of cell proliferation. We conclude that noncoding hY RNAs have potential both as new cancer biomarkers and as molecular targets for anti-proliferative intervention

    Cytosolic 5'-nucleotidase 1A autoantibody profile and clinical characteristics in inclusion body myositis

    Get PDF
    OBJECTIVES: Autoantibodies directed against cytosolic 5'-nucleotidase 1A have been identified in many patients with inclusion body myositis. This retrospective study investigated the association between anticytosolic 5'-nucleotidase 1A antibody status and clinical, serological and histopathological features to explore the utility of this antibody to identify inclusion body myositis subgroups and to predict prognosis.MATERIALS AND METHODS: Data from various European inclusion body myositis registries were pooled. Anticytosolic 5'-nucleotidase 1A status was determined by an established ELISA technique. Cases were stratified according to antibody status and comparisons made. Survival and mobility aid requirement analyses were performed using Kaplan-Meier curves and Cox proportional hazards regression.RESULTS: Data from 311 patients were available for analysis; 102 (33%) had anticytosolic 5'-nucleotidase 1A antibodies. Antibody-positive patients had a higher adjusted mortality risk (HR 1.89, 95% CI 1.11 to 3.21, p=0.019), lower frequency of proximal upper limb weakness at disease onset (8% vs 23%, adjusted OR 0.29, 95% CI 0.12 to 0.68, p=0.005) and an increased prevalence of excess of cytochrome oxidase deficient fibres on muscle biopsy analysis (87% vs 72%, adjusted OR 2.80, 95% CI 1.17 to 6.66, p=0.020), compared with antibody-negative patients.INTERPRETATION: Differences were observed in clinical and histopathological features between anticytosolic 5'-nucleotidase 1A antibody positive and negative patients with inclusion body myositis, and antibody-positive patients had a higher adjusted mortality risk. Stratification of inclusion body myositis by anticytosolic 5'-nucleotidase 1A antibody status may be useful, potentially highlighting a distinct inclusion body myositis subtype with a more severe phenotype.</p

    Pathogenic variants in glutamyl-tRNAGln amidotransferase subunits cause a lethal mitochondrial cardiomyopathy disorder.

    Get PDF
    Mitochondrial protein synthesis requires charging mt-tRNAs with their cognate amino acids by mitochondrial aminoacyl-tRNA synthetases, with the exception of glutaminyl mt-tRNA (mt-tRNAGln). mt-tRNAGln is indirectly charged by a transamidation reaction involving the GatCAB aminoacyl-tRNA amidotransferase complex. Defects involving the mitochondrial protein synthesis machinery cause a broad spectrum of disorders, with often fatal outcome. Here, we describe nine patients from five families with genetic defects in a GatCAB complex subunit, including QRSL1, GATB, and GATC, each showing a lethal metabolic cardiomyopathy syndrome. Functional studies reveal combined respiratory chain enzyme deficiencies and mitochondrial dysfunction. Aminoacylation of mt-tRNAGln and mitochondrial protein translation are deficient in patients' fibroblasts cultured in the absence of glutamine but restore in high glutamine. Lentiviral rescue experiments and modeling in S. cerevisiae homologs confirm pathogenicity. Our study completes a decade of investigations on mitochondrial aminoacylation disorders, starting with DARS2 and ending with the GatCAB complex
    corecore