127 research outputs found

    The use of fluoroproline in MUC1 antigen enables efficient detection of antibodies in patients with prostate cancer

    Get PDF
    A structure-based design of a new gene22ration tumor-associated glycopeptides with improved affinity against two anti-MUC1 antibodies is described. These unique antigens feature a fluorinated proline residue, such as a (4S)-4-fluoro-L-proline or 4,4-difluoroproline, at the most immunogenic domain. Binding assays using bio-layer interferometry reveal 3-fold to 10-fold affinity improvement with respect to the natural (glyco)peptides. According to X-ray crystallography and MD simulations, the fluorinated residues stabilize the antigen-antibody complex by enhancing key CH/ interactions. Interestingly, a notable improvement in detection of cancer-associated anti-MUC1 antibodies from serum of patients with prostate cancer is achieved with the non-natural antigens, which proves that these derivatives can be considered better diagnostic tools than the natural antigen for this type of cancer.We thank the Ministerio de Economía y Competitividad (projects CTQ2015-67727-R, UNLR13-4E-1931, CTQ2013-44367-C2-2-P, CTQ2015-64597-C2-1P, and BFU2016-75633-P). I. A. B. thanks the Asociación Española Contra el Cancer en La Rioja for a grant. I. S. A. and G. J. L. B. thank FCT Portugal (PhD studentship and FCT Investigator, respectively) and the EPSRC for funding. G. J. L. B. holds a Royal Society URF and an ERC StG (TagIt). F.C. and G. J. L. B thank the EU (Marie-Sklodowska Curie ITN, Protein Conjugates). R.H-G. thanks Agencia Aragonesa para la Investigación y Desarrollo (ARAID) and the Diputación General de Aragón (DGA, B89) for financial support. The research leading to these results has also received funding from the FP7 (2007-2013) under BioStruct-X (grant agreement N°283570 and BIOSTRUCTX_5186). We thank synchrotron radiation source DIAMOND (Oxford) and beamline I04 (number of experiment mx10121-19). Hokkaido University group acknowledges to JSPS KAKENHI Grant Number 25220206 and JSPS Wakate B KAKENHI Grant Number 24710242. We also thank CESGA (Santiago de Compostela) for computer support

    Overlay of conventional angiographic and en-face OCT images enhances their interpretation

    Get PDF
    BACKGROUND: Combining characteristic morphological and functional information in one image increases pathophysiologic understanding as well as diagnostic accuracy in most clinical settings. En-face optical coherence tomography (OCT) provides a high resolution, transversal OCT image of the macular area combined with a confocal image of the same area (OCT C-scans). Creating an overlay image of a conventional angiographic image onto an OCT image, using the confocal part to facilitate transformation, combines structural and functional information of the retinal area of interest. This paper describes the construction of such overlay images and their aid in improving the interpretation of OCT C-scans. METHODS: In various patients, en-face OCT C-scans (made with a prototype OCT-Ophthalmoscope (OTI, Canada) in use at the Department of Ophthalmology (Academic Medical Centre, Amsterdam, The Netherlands)) and conventional fluorescein angiography (FA) were performed. ImagePro, with a custom made plug-in, was used to make an overlay-image. The confocal part of the OCT C-scan was used to spatially transform the FA image onto the OCT C-scan, using the vascular arcades as a reference. To facilitate visualization the transformed angiographic image and the OCT C-scan were combined in an RGB image. RESULTS: The confocal part of the OCT C-scan could easily be fused with angiographic images. Overlay showed a direct correspondence between retinal thickening and FA leakage in Birdshot retinochoroiditis, localized the subretinal neovascular membrane and correlated anatomic and vascular leakage features in myopia, and showed the extent of retinal and pigment epithelial detachment in retinal angiomatous proliferation as FA leakage was subject to blocked fluorescence. The overlay mode provided additional insight not readily available in either mode alone. CONCLUSION: Combining conventional angiographic images and en-face OCT C-scans assists in the interpretation of both imaging modalities. By combining the physiopathological information in the angiograms with the structural information in the OCT scan, zones of leakage can be correlated to structural changes in the retina or pigment epithelium. This strategy could be used in the evaluation and monitoring of patients with complex central macular pathology

    Retinal nerve fibre layer thickness profile in normal eyes using third-generation optical coherence tomography

    Get PDF
    Aims To establish four normal retinal nerve fibre layer (RNFL) thickness radial profiles based on third-generation optical coherence tomography (OCT) and to compare them with previously reported histologic measurements.Methods A total of 20 normal eyes were studied. A circular scan was adjusted to the size of the optic disc and three scans were performed with this radius and every 200 mu m thereafter, up to a distance of 1400 mu m. Four different radial sections (superotemporal, superonasal, inferonasal, and inferotemporal) were studied to establish RNFL thickness OCT profiles. Additionally, two radial scans orientated at 45 and 1351 crossing the optic disc centre were performed in six of 20 eyes, and RNFL thickness was measured at disc margin.Results Quadrant location and distance from disc margin interaction in RNFL thickness was statistically significant (P < 0.001). the RNFL thickness decreased (P < 0.001) as the distance from the disc margin increased for all sections. the measurements automatically generated by the OCT built-in software were thinner (P < 0.001) than histologic ones close to the disc margin.Conclusions Four normal OCT RNFL profiles were established and compared with histological data obtained from the same area. RNFL measurements assessed by OCT 3 were significantly thinner close to the optic disc margin.Hosp Olhos Araraquara, Glaucoma Sect, BR-14802530 Araraquara, SP, BrazilHosp Olhos Araraquara, Retina Diagnost & Treatment Div, BR-14802530 Araraquara, SP, BrazilUniversidade Federal de São Paulo, São Paulo, BrazilUSP, Inst Fis Sao Carlos, Sao Carlos, SP, BrazilUniv So Calif, Doheny Eye Inst, Dept Ophthalmol, Los Angeles, CA USAUniversidade Federal de São Paulo, São Paulo, BrazilWeb of Scienc

    Performance of CMS muon reconstruction in pp collision events at sqrt(s) = 7 TeV

    Get PDF
    The performance of muon reconstruction, identification, and triggering in CMS has been studied using 40 inverse picobarns of data collected in pp collisions at sqrt(s) = 7 TeV at the LHC in 2010. A few benchmark sets of selection criteria covering a wide range of physics analysis needs have been examined. For all considered selections, the efficiency to reconstruct and identify a muon with a transverse momentum pT larger than a few GeV is above 95% over the whole region of pseudorapidity covered by the CMS muon system, abs(eta) < 2.4, while the probability to misidentify a hadron as a muon is well below 1%. The efficiency to trigger on single muons with pT above a few GeV is higher than 90% over the full eta range, and typically substantially better. The overall momentum scale is measured to a precision of 0.2% with muons from Z decays. The transverse momentum resolution varies from 1% to 6% depending on pseudorapidity for muons with pT below 100 GeV and, using cosmic rays, it is shown to be better than 10% in the central region up to pT = 1 TeV. Observed distributions of all quantities are well reproduced by the Monte Carlo simulation.Comment: Replaced with published version. Added journal reference and DO

    Performance of CMS muon reconstruction in pp collision events at sqrt(s) = 7 TeV

    Get PDF
    The performance of muon reconstruction, identification, and triggering in CMS has been studied using 40 inverse picobarns of data collected in pp collisions at sqrt(s) = 7 TeV at the LHC in 2010. A few benchmark sets of selection criteria covering a wide range of physics analysis needs have been examined. For all considered selections, the efficiency to reconstruct and identify a muon with a transverse momentum pT larger than a few GeV is above 95% over the whole region of pseudorapidity covered by the CMS muon system, abs(eta) < 2.4, while the probability to misidentify a hadron as a muon is well below 1%. The efficiency to trigger on single muons with pT above a few GeV is higher than 90% over the full eta range, and typically substantially better. The overall momentum scale is measured to a precision of 0.2% with muons from Z decays. The transverse momentum resolution varies from 1% to 6% depending on pseudorapidity for muons with pT below 100 GeV and, using cosmic rays, it is shown to be better than 10% in the central region up to pT = 1 TeV. Observed distributions of all quantities are well reproduced by the Monte Carlo simulation.Comment: Replaced with published version. Added journal reference and DO

    Networks of High Mutual Information Define the Structural Proximity of Catalytic Sites: Implications for Catalytic Residue Identification

    Get PDF
    Identification of catalytic residues (CR) is essential for the characterization of enzyme function. CR are, in general, conserved and located in the functional site of a protein in order to attain their function. However, many non-catalytic residues are highly conserved and not all CR are conserved throughout a given protein family making identification of CR a challenging task. Here, we put forward the hypothesis that CR carry a particular signature defined by networks of close proximity residues with high mutual information (MI), and that this signature can be applied to distinguish functional from other non-functional conserved residues. Using a data set of 434 Pfam families included in the catalytic site atlas (CSA) database, we tested this hypothesis and demonstrated that MI can complement amino acid conservation scores to detect CR. The Kullback-Leibler (KL) conservation measurement was shown to significantly outperform both the Shannon entropy and maximal frequency measurements. Residues in the proximity of catalytic sites were shown to be rich in shared MI. A structural proximity MI average score (termed pMI) was demonstrated to be a strong predictor for CR, thus confirming the proposed hypothesis. A structural proximity conservation average score (termed pC) was also calculated and demonstrated to carry distinct information from pMI. A catalytic likeliness score (Cls), combining the KL, pC and pMI measures, was shown to lead to significantly improved prediction accuracy. At a specificity of 0.90, the Cls method was found to have a sensitivity of 0.816. In summary, we demonstrate that networks of residues with high MI provide a distinct signature on CR and propose that such a signature should be present in other classes of functional residues where the requirement to maintain a particular function places limitations on the diversification of the structural environment along the course of evolution
    corecore