41 research outputs found

    X-Ray Phase-Contrast Tomography of Renal Ischemia-Reperfusion Damage

    Get PDF
    Purpose: The aim of the study was to investigate microstructural changes occurring in unilateral renal ischemia-reperfusion injury in a murine animal model using synchrotron radiation. Material and Methods: The effects of renal ischemia-reperfusion were investigated in a murine animal model of unilateral ischemia. Kidney samples were harvested on day 18. Grating-Based Phase-Contrast Imaging (GB-PCI) of the paraffin-embedded kidney samples was performed at a Synchrotron Radiation Facility (beam energy of 19 keV). To obtain phase information, a two-grating Talbot interferometer was used applying the phase stepping technique. The imaging system provided an effective pixel size of 7.5 mu m. The resulting attenuation and differential phase projections were tomographically reconstructed using filtered back-projection. Semi-automated segmentation and volumetry and correlation to histopathology were performed. Results: GB-PCI provided good discrimination of the cortex, outer and inner medulla in non-ischemic control kidneys. Post-ischemic kidneys showed a reduced compartmental differentiation, particularly of the outer stripe of the outer medulla, which could not be differentiated from the inner stripe. Compared to the contralateral kidney, after ischemia a volume loss was detected, while the inner medulla mainly retained its volume (ratio 0.94). Post-ischemic kidneys exhibited severe tissue damage as evidenced by tubular atrophy and dilatation, moderate inflammatory infiltration, loss of brush borders and tubular protein cylinders. Conclusion: In conclusion GB-PCI with synchrotron radiation allows for non-destructive microstructural assessment of parenchymal kidney disease and vessel architecture. If translation to lab-based approaches generates sufficient density resolution, and with a time-optimized image analysis protocol, GB-PCI may ultimately serve as a non-invasive, non-enhanced alternative for imaging of pathological changes of the kidney

    Consensus guidelines for the use and interpretation of angiogenesis assays

    Get PDF
    The formation of new blood vessels, or angiogenesis, is a complex process that plays important roles in growth and development, tissue and organ regeneration, as well as numerous pathological conditions. Angiogenesis undergoes multiple discrete steps that can be individually evaluated and quantified by a large number of bioassays. These independent assessments hold advantages but also have limitations. This article describes in vivo, ex vivo, and in vitro bioassays that are available for the evaluation of angiogenesis and highlights critical aspects that are relevant for their execution and proper interpretation. As such, this collaborative work is the first edition of consensus guidelines on angiogenesis bioassays to serve for current and future reference

    Modelling of mixed damage on fibre reinforced composite laminates subjected to low velocity impact

    No full text
    This article presents a numerical technique for the computation of damage in fibre-reinforced laminated composites which is embedded into an explicit finite element method. The technique is composed of two main components. First, a novel characterisation of the directions in which the various modes of damage propagate, which produces an effective damage localisation. This is conducted taking into consideration the strain-rate dependence. Second, a new mapping between the strain and stress spaces for the computation of the damage surfaces whereby time-stepping convergence is enhanced. Additionally, new damage initiation criteria in terms of strain damage surfaces are presented. Details of the in-house code developed are presented as well as the programming features. The capabilities of the technique are shown by means of tests on single fibre-reinforced element and low velocity impact on the laminate. It is shown that delamination is located in the expected regions by gradual progression of internal damage variables
    corecore