32 research outputs found

    Inhibitory effects of pharmacological doses of melatonin on aromatase activity and expression in rat glioma cells

    Get PDF
    Melatonin exerts oncostatic effects on different kinds of neoplasias, especially on oestrogen-dependent tumours. Recently, it has been described that melatonin, on the basis of its antioxidant properties, inhibits the growth of glioma cells. Glioma cells express oestrogen receptors and have the ability to synthesise oestrogens from androgens. In the present study, we demonstrate that pharmacological concentrations of melatonin decreases the growth of C6 glioma cells and reduces the local biosynthesis of oestrogens, through the inhibition of aromatase, the enzyme that catalyses the conversion of androgens into oestrogens. These results are supported by three types of evidence. Firstly, melatonin counteracts the growth stimulatory effects of testosterone on glioma cells, which is dependent on the local synthesis of oestrogens from testosterone. Secondly, we found that melatonin reduces the aromatase activity of C6 cells, measured by the tritiated water release assay. Finally, by (RT)–PCR, we found that melatonin downregulates aromatase mRNA steady-state levels in these glioma cells. We conclude that melatonin inhibits the local production of oestrogens decreasing aromatase activity and expression. By analogy to the implications of aromatase in other forms of oestrogen-sensitive tumours, it is conceivable that the modulation of the aromatase by pharmacological melatonin may play a role in the growth of glioblastomas

    Mechanoresponsive stem cells acquire neural crest fate in jaw regeneration

    No full text
    During both embryonic development and adult tissue regeneration, changes in chromatin structure driven by master transcription factors lead to stimulus-responsive transcriptional programs. A thorough understanding of how stem cells in the skeleton interpret mechanical stimuli and enact regeneration would shed light on how forces are transduced to the nucleus in regenerative processes. Here we develop a genetically dissectible mouse model of mandibular distraction osteogenesis-which is a process that is used in humans to correct an undersized lower jaw that involves surgically separating the jaw bone, which elicits new bone growth in the gap. We use this model to show that regions of newly formed bone are clonally derived from stem cells that reside in the skeleton. Using chromatin and transcriptional profiling, we show that these stem-cell populations gain activity within the focal adhesion kinase (FAK) signalling pathway, and that inhibiting FAK abolishes new bone formation. Mechanotransduction via FAK in skeletal stem cells during distraction activates a gene-regulatory program and retrotransposons that are normally active in primitive neural crest cells, from which skeletal stem cells arise during development. This reversion to a developmental state underlies the robust tissue growth that facilitates stem-cell-based regeneration of adult skeletal tissue

    An overview of the antimicrobial resistance mechanisms of bacteria

    No full text

    Exclusive J/psi Photoproduction off Protons in Ultraperipheral p-Pb Collisions at root s(NN)=5.02 TeV

    No full text
    We present the first measurement at the LHC of exclusive J/psi photoproduction off protons, in ultraperipheral proton-lead collisions at root s(NN) = 5.02 TeV. Events are selected with a dimuon pair produced either in the rapidity interval, in the laboratory frame, 2.5 J/psi + p) are 33.2 +/- 2.2(stat) +/- 3.2(syst) +/- 0.7(theor) nb in p-Pb and 284 +/- 36(stat)(-32)(+27)(syst) +/- 26(theor) nb in Pb-p collisions. We measure this process up to about 700 GeV in the gamma p center of mass, which is a factor of two larger than the highest energy studied at HERA. The data are consistent with a power law dependence of the J/psi photoproduction cross section in gamma p energies from about 20 to 700 GeV, or equivalently, from Bjorken x scaling variable between similar to 2 x 10(-2) and similar to 2 x 10(-5), thus indicating no significant change in the gluon density behavior of the proton between HERA and LHC energies

    K*(892)(0) and phi(1020) production in Pb-Pb collisions at root s(NN)=2.76 TeV

    No full text
    The yields of the K*(892)(0) and phi(1020) resonances are measured in Pb-Pb collisions at root s(NN) = 2.76 TeV through their hadronic decays using the ALICE detector. The measurements are performed in multiple centrality intervals at mid-rapidity (vertical bar y vertical bar < 0.5) in the transverse-momentum ranges 0.3 < p(T) < 5 GeV/c for the K*(892)(0) and 0.5 < p(T) < 5 GeV/c for the phi(1020). The yields of K*(892)(0) are suppressed in central Pb-Pb collisions with respect to pp and peripheral Pb-Pb collisions (perhaps due to rescattering of its decay products in the hadronic medium), while the longer-lived phi(1020) meson is not suppressed. These particles are also used as probes to study the mechanisms of particle production. The shape of the pT distribution of the phi(1020) meson, but not its yield, is reproduced fairly well by hydrodynamic models for central Pb-Pb collisions. In central Pb-Pb collisions at low and intermediate p(T), the p/phi(1020) ratio is flat in p(T), while the p/pi and phi(1020)/pi ratios show a pronounced increase and have similar shapes to each other. These results indicate that the shapes of the p(T) distributions of these particles in central Pb-Pb collisions are determined predominantly by the particle masses and radial flow. Finally, phi(1020) production in Pb-Pb collisions is enhanced, with respect to the yield in pp collisions and the yield of charged pions, by an amount similar to the Lambda and Xi

    Measurement of electrons from semileptonic heavy-flavor hadron decays in pp collisions at root s=2.76 TeV

    No full text
    The p(T)-differential production cross section of electrons from semileptonic decays of heavy-flavor hadrons has been measured at midrapidity in proton-proton collisions at root s = 2.76 TeV in the transverse momentum range 0.5 < p(T) < 12 GeV/c with the ALICE detector at the LHC. The analysis was performed using minimum bias events and events triggered by the electromagnetic calorimeter. Predictions from perturbative QCD calculations agree with the data within the theoretical and experimental uncertainties
    corecore