42 research outputs found

    Health effects of omega-3,6,9 fatty acids: Perilla frutescens is a good example of plant oils

    Get PDF
    Perilla frutescens seeds are a good source of polyunsaturated fatty acids (PUFAs). The seeds of perilla are small end globular weight about 4 g/1000, contained approximately 35–45% oil. However the leaves are a very poor source of oil, since they contain only 0.2%. In addition, only the seed oil contains the omega 3 fatty acid alpha-linolenic acid (ALA). In comparing to other plant oils, perilla seed oil consistently contains the one of the highest proportion of omega-3 (ALA) fatty acids, at 54–64%. The omega-6 (linoleic acid) component is usually around 14% and omega-9 (Oleic acid) is also present in perilla oil. These polyunsaturated fatty acids are most beneficial to human health and in prevention of different diseases like cardiovascular disorders, cancer, inflammatory, rheumatoid arthritis etc

    Patent foramen ovale: Unanswered questions

    Full text link
    The foramen ovale is a remnant of the fetal circulation that remains patent in 20-25% of the adult population. Although long overlooked as a potential pathway that could produce pathologic conditions, the presence of a patent foramen ovale (PFO) has been associated with a higher than expected frequency in a variety of clinical syndromes including cryptogenic stroke, migraines, sleep apnea, platypnea-orthodeoxia, deep sea diving associated decompression illness, and high altitude pulmonary edema. A unifying hypothesis is that a chemical or particulate matter from the venous circulation crosses the PFO conduit between the right and left atria to produce a variety of clinical syndromes. Although observational studies suggest a therapeutic benefit of PFO closure compared to medical therapy alone in patients with cryptogenic stroke, 3 randomized controlled trials (RCTs) did not confirm the superiority of PFO closure for the secondary prevention of stroke. However, meta-analyses of these RCTs demonstrate a significant benefit of PFO closure over medical therapy alone. Similarly, observational studies provide support for PFO closure for symptomatic relief of migraines. But one controversial randomized study failed to replicate the results of the observational studies while another two demonstrated a partial benefit. The goal of this review is to discuss the clinical conditions associated with PFO and provide internists and primary care physicians with current data on PFO trials, and clinical insight to help guide their patients who are found to have a PFO on echocardiographic testing

    Driver mutations of cancer epigenomes

    Get PDF

    Coordinate Dependence of Variability Analysis

    Get PDF
    Analysis of motor performance variability in tasks with redundancy affords insight about synergies underlying central nervous system (CNS) control. Preferential distribution of variability in ways that minimally affect task performance suggests sophisticated neural control. Unfortunately, in the analysis of variability the choice of coordinates used to represent multi-dimensional data may profoundly affect analysis, introducing an arbitrariness which compromises its conclusions. This paper assesses the influence of coordinates. Methods based on analyzing a covariance matrix are fundamentally dependent on an investigator's choices. Two reasons are identified: using anisotropy of a covariance matrix as evidence of preferential distribution of variability; and using orthogonality to quantify relevance of variability to task performance. Both are exquisitely sensitive to coordinates. Unless coordinates are known a priori, these methods do not support unambiguous inferences about CNS control. An alternative method uses a two-level approach where variability in task execution (expressed in one coordinate frame) is mapped by a function to its result (expressed in another coordinate frame). An analysis of variability in execution using this function to quantify performance at the level of results offers substantially less sensitivity to coordinates than analysis of a covariance matrix of execution variables. This is an initial step towards developing coordinate-invariant analysis methods for movement neuroscience.National Science Foundation (BCS-0096543 and PAC-0450218 )National Institutes of Health (R01HD045639 )New York State Spinal Cord Injury Center of Research Excellence (CO19772)Toyota Motor Company's Partner Robot DivisionEric P. and Evelyn E. Newman Fun
    corecore