681 research outputs found

    On Deciding Local Theory Extensions via E-matching

    Full text link
    Satisfiability Modulo Theories (SMT) solvers incorporate decision procedures for theories of data types that commonly occur in software. This makes them important tools for automating verification problems. A limitation frequently encountered is that verification problems are often not fully expressible in the theories supported natively by the solvers. Many solvers allow the specification of application-specific theories as quantified axioms, but their handling is incomplete outside of narrow special cases. In this work, we show how SMT solvers can be used to obtain complete decision procedures for local theory extensions, an important class of theories that are decidable using finite instantiation of axioms. We present an algorithm that uses E-matching to generate instances incrementally during the search, significantly reducing the number of generated instances compared to eager instantiation strategies. We have used two SMT solvers to implement this algorithm and conducted an extensive experimental evaluation on benchmarks derived from verification conditions for heap-manipulating programs. We believe that our results are of interest to both the users of SMT solvers as well as their developers

    Hierarchic Superposition Revisited

    Get PDF
    Many applications of automated deduction require reasoning in first-order logic modulo background theories, in particular some form of integer arithmetic. A major unsolved research challenge is to design theorem provers that are "reasonably complete" even in the presence of free function symbols ranging into a background theory sort. The hierarchic superposition calculus of Bachmair, Ganzinger, and Waldmann already supports such symbols, but, as we demonstrate, not optimally. This paper aims to rectify the situation by introducing a novel form of clause abstraction, a core component in the hierarchic superposition calculus for transforming clauses into a form needed for internal operation. We argue for the benefits of the resulting calculus and provide two new completeness results: one for the fragment where all background-sorted terms are ground and another one for a special case of linear (integer or rational) arithmetic as a background theory

    Integrated Reasoning and Proof Choice Point Selection in the Jahob System – Mechanisms for Program Survival

    Get PDF
    In recent years researchers have developed a wide range of powerful automated reasoning systems. We have leveraged these systems to build Jahob, a program specification, analysis, and verification system. In contrast to many such systems, which use a monolithic reasoning approach, Jahob provides a general integrated reasoning framework, which enables multiple automated reasoning systems to work together to prove the desired program correctness properties. We have used Jahob to prove the full functional correctness of a collection of linked data structure implementations. The automated reasoning systems are able to automatically perform the vast majority of the reasoning steps required for this verification. But there are some complex verification conditions that they fail to prove. We have therefore developed a proof language, integrated into the underlying imperative Java programming language, that developers can use to control key choice points in the proof search space. Once the developer has resolved these choice points, the automated reasoning systems are able to complete the verification. This approach appropriately leverages both the developer’s insight into the high-level structure of the proof and the ability of the automated reasoning systems to perform the mechanical steps required to prove the verification conditions. Building on Jahob’s success with this challenging program verification problem, we contemplate the possibility of verifying the complete absence of fatal errors in large software systems. We envision combining simple techniques that analyze the vast majority of the program with heavyweight techniques that analyze those more sophisticated parts of the program that may require arbitrarily sophisticated reasoning. Modularity mechanisms such as abstract data types enable the sound division of the program for this purpose. The goal is not a completely correct program, but a program that can survive any remaining errors to continue to provide acceptable service

    Invariant Synthesis for Incomplete Verification Engines

    Full text link
    We propose a framework for synthesizing inductive invariants for incomplete verification engines, which soundly reduce logical problems in undecidable theories to decidable theories. Our framework is based on the counter-example guided inductive synthesis principle (CEGIS) and allows verification engines to communicate non-provability information to guide invariant synthesis. We show precisely how the verification engine can compute such non-provability information and how to build effective learning algorithms when invariants are expressed as Boolean combinations of a fixed set of predicates. Moreover, we evaluate our framework in two verification settings, one in which verification engines need to handle quantified formulas and one in which verification engines have to reason about heap properties expressed in an expressive but undecidable separation logic. Our experiments show that our invariant synthesis framework based on non-provability information can both effectively synthesize inductive invariants and adequately strengthen contracts across a large suite of programs

    A CDCL-style calculus for solving non-linear constraints

    Get PDF
    In this paper we propose a novel approach for checking satisfiability of non-linear constraints over the reals, called ksmt. The procedure is based on conflict resolution in CDCL style calculus, using a composition of symbolical and numerical methods. To deal with the non-linear components in case of conflicts we use numerically constructed restricted linearisations. This approach covers a large number of computable non-linear real functions such as polynomials, rational or trigonometrical functions and beyond. A prototypical implementation has been evaluated on several non-linear SMT-LIB examples and the results have been compared with state-of-the-art SMT solvers.Comment: 17 pages, 3 figures; accepted at FroCoS 2019; software available at <http://informatik.uni-trier.de/~brausse/ksmt/

    Delta-Decision Procedures for Exists-Forall Problems over the Reals

    Full text link
    Solving nonlinear SMT problems over real numbers has wide applications in robotics and AI. While significant progress is made in solving quantifier-free SMT formulas in the domain, quantified formulas have been much less investigated. We propose the first delta-complete algorithm for solving satisfiability of nonlinear SMT over real numbers with universal quantification and a wide range of nonlinear functions. Our methods combine ideas from counterexample-guided synthesis, interval constraint propagation, and local optimization. In particular, we show how special care is required in handling the interleaving of numerical and symbolic reasoning to ensure delta-completeness. In experiments, we show that the proposed algorithms can handle many new problems beyond the reach of existing SMT solvers

    A Survey of Satisfiability Modulo Theory

    Full text link
    Satisfiability modulo theory (SMT) consists in testing the satisfiability of first-order formulas over linear integer or real arithmetic, or other theories. In this survey, we explain the combination of propositional satisfiability and decision procedures for conjunctions known as DPLL(T), and the alternative "natural domain" approaches. We also cover quantifiers, Craig interpolants, polynomial arithmetic, and how SMT solvers are used in automated software analysis.Comment: Computer Algebra in Scientific Computing, Sep 2016, Bucharest, Romania. 201

    Shear Viscosity to Entropy Density Ratio in Six Derivative Gravity

    Full text link
    We calculate shear viscosity to entropy density ratio in presence of four derivative (with coefficient α\alpha') and six derivative (with coefficient α2\alpha'^2) terms in bulk action. In general, there can be three possible four derivative terms and ten possible six derivative terms in the Lagrangian. Among them two four derivative and eight six derivative terms are ambiguous, i.e., these terms can be removed from the action by suitable field redefinitions. Rest are unambiguous. According to the AdS/CFT correspondence all the unambiguous coefficients (coefficients of unambiguous terms) can be fixed in terms of field theory parameters. Therefore, any measurable quantities of boundary theory, for example shear viscosity to entropy density ratio, when calculated holographically can be expressed in terms of unambiguous coefficients in the bulk theory (or equivalently in terms of boundary parameters). We calculate η/s\eta/s for generic six derivative gravity and find that apparently it depends on few ambiguous coefficients at order α2\alpha'^2. We calculate six derivative corrections to central charges aa and cc and express η/s\eta/s in terms of these central charges and unambiguous coefficients in the bulk theory.Comment: 29 pages, no figure, V2, results and typos correcte
    corecore