105 research outputs found

    Homozygosity for a missense mutation in the 67 kDa isoform of glutamate decarboxylase in a family with autosomal recessive spastic cerebral palsy: parallels with Stiff-Person Syndrome and other movement disorders

    Get PDF
    Background Cerebral palsy (CP) is an heterogeneous group of neurological disorders of movement and/or posture, with an estimated incidence of 1 in 1000 live births. Non-progressive forms of symmetrical, spastic CP have been identified, which show a Mendelian autosomal recessive pattern of inheritance. We recently described the mapping of a recessive spastic CP locus to a 5 cM chromosomal region located at 2q24-31.1, in rare consanguineous families. Methods Here we present data that refine this locus to a 0.5 cM region, flanked by the microsatellite markers D2S2345 and D2S326. The minimal region contains the candidate gene GAD1, which encodes a glutamate decarboxylase isoform (GAD67), involved in conversion of the amino acid and excitatory neurotransmitter glutamate to the inhibitory neurotransmitter γ-aminobutyric acid (GABA). Results A novel amino acid mis-sense mutation in GAD67 was detected, which segregated with CP in affected individuals. Conclusions This result is interesting because auto-antibodies to GAD67 and the more widely studied GAD65 homologue encoded by the GAD2 gene, are described in patients with Stiff-Person Syndrome (SPS), epilepsy, cerebellar ataxia and Batten disease. Further investigation seems merited of the possibility that variation in the GAD1 sequence, potentially affecting glutamate/GABA ratios, may underlie this form of spastic CP, given the presence of anti-GAD antibodies in SPS and the recognised excitotoxicity of glutamate in various contexts

    Lumazine Synthase Protein Nanoparticle-Gd(III)-DOTA Conjugate as a T1 contrast agent for high-field MRI

    Get PDF
    With the applications of magnetic resonance imaging (MRI) at higher magnetic fields increasing, there is demand for MRI contrast agents with improved relaxivity at higher magnetic fields. Macromolecule-based contrast agents, such as protein-based ones, are known to yield significantly higher r(1) relaxivity at low fields, but tend to lose this merit when used as T-1 contrast agents (r(1)/r(2) = 0.5 similar to 1), with their r(1) decreasing and r(2) increasing as magnetic field strength increases. Here, we developed and characterized an in vivo applicable magnetic resonance (MR) positive contrast agent by conjugating Gd(III)-chelating agent complexes to lumazine synthase isolated from Aquifex aeolicus (AaLS). The r(1) relaxivity of Gd(III)-DOTA-AaLS-R108C was 16.49 mM(-1)s(-1) and its r(1)/r(2) ratio was 0.52 at the magnetic field strength of 7 T. The results of 3D MR angiography demonstrated the feasibility of vasculature imaging within 2 h of intravenous injection of the agent and a significant reduction in T-1 values were observed in the tumor region 7 h post-injection in the SCC-7 flank tumor model. Our findings suggest that Gd(III)-DOTA-AaLS-R108C could serve as a potential theranostic nanoplatform at high magnetic field strength.open0

    An fMRI Investigation of Preparatory Set in the Human Cerebral Cortex and Superior Colliculus for Pro- and Anti-Saccades

    Get PDF
    Previous studies have identified several cortical regions that show larger BOLD responses during preparation and execution of anti-saccades than pro-saccades. We confirmed this finding with a greater BOLD response for anti-saccades than pro-saccades during the preparation phase in the FEF, IPS and DLPFC and in the FEF and IPS in the execution phase. We then applied multi-voxel pattern analysis (MVPA) to establish whether different neural populations are involved in the two types of saccade. Pro-saccades and anti-saccades were reliably decoded during saccade execution in all three cortical regions (FEF, DLPFC and IPS) and in IPS during saccade preparation. This indicates neural specialization, for programming the desired response depending on the task rule, in these regions. In a further study tailored for imaging the superior colliculus in the midbrain a similar magnitude BOLD response was observed for pro-saccades and anti-saccades and the two saccade types could not be decoded with MVPA. This was the case both for activity related to the preparation phase and also for that elicited during the execution phase. We conclude that separate cortical neural populations are involved in the task-specific programming of a saccade while in contrast, the SC has a role in response preparation but may be less involved in high-level, task-specific aspects of the control of saccades

    Selection on Alleles Affecting Human Longevity and Late-Life Disease: The Example of Apolipoprotein E

    Get PDF
    It is often claimed that genes affecting health in old age, such as cardiovascular and Alzheimer diseases, are beyond the reach of natural selection. We show in a simulation study based on known genetic (apolipoprotein E) and non-genetic risk factors (gender, diet, smoking, alcohol, exercise) that, because there is a statistical distribution of ages at which these genes exert their influence on morbidity and mortality, the effects of selection are in fact non-negligible. A gradual increase with each generation of the ε2 and ε3 alleles of the gene at the expense of the ε4 allele was predicted from the model. The ε2 allele frequency was found to increase slightly more rapidly than that for ε3, although there was no statistically significant difference between the two. Our result may explain the recent evolutionary history of the epsilon 2, 3 and 4 alleles of the apolipoprotein E gene and has wider relevance for genes affecting human longevity

    Measuring serotonin synthesis: from conventional methods to PET tracers and their (pre)clinical implications

    Get PDF
    The serotonergic system of the brain is complex, with an extensive innervation pattern covering all brain regions and endowed with at least 15 different receptors (each with their particular distribution patterns), specific reuptake mechanisms and synthetic processes. Many aspects of the functioning of the serotonergic system are still unclear, partially because of the difficulty of measuring physiological processes in the living brain. In this review we give an overview of the conventional methods of measuring serotonin synthesis and methods using positron emission tomography (PET) tracers, more specifically with respect to serotonergic function in affective disorders. Conventional methods are invasive and do not directly measure synthesis rates. Although they may give insight into turnover rates, a more direct measurement may be preferred. PET is a noninvasive technique which can trace metabolic processes, like serotonin synthesis. Tracers developed for this purpose are α-[11C]methyltryptophan ([11C]AMT) and 5-hydroxy-L-[β-11C]tryptophan ([11C]5-HTP). Both tracers have advantages and disadvantages. [11C]AMT can enter the kynurenine pathway under inflammatory conditions (and thus provide a false signal), but this tracer has been used in many studies leading to novel insights regarding antidepressant action. [11C]5-HTP is difficult to produce, but trapping of this compound may better represent serotonin synthesis. AMT and 5-HTP kinetics are differently affected by tryptophan depletion and changes of mood. This may indicate that both tracers are associated with different enzymatic processes. In conclusion, PET with radiolabelled substrates for the serotonergic pathway is the only direct way to detect changes of serotonin synthesis in the living brain

    Sex Differences in the Brain: A Whole Body Perspective

    Get PDF
    Most writing on sexual differentiation of the mammalian brain (including our own) considers just two organs: the gonads and the brain. This perspective, which leaves out all other body parts, misleads us in several ways. First, there is accumulating evidence that all organs are sexually differentiated, and that sex differences in peripheral organs affect the brain. We demonstrate this by reviewing examples involving sex differences in muscles, adipose tissue, the liver, immune system, gut, kidneys, bladder, and placenta that affect the nervous system and behavior. The second consequence of ignoring other organs when considering neural sex differences is that we are likely to miss the fact that some brain sex differences develop to compensate for differences in the internal environment (i.e., because male and female brains operate in different bodies, sex differences are required to make output/function more similar in the two sexes). We also consider evidence that sex differences in sensory systems cause male and female brains to perceive different information about the world; the two sexes are also perceived by the world differently and therefore exposed to differences in experience via treatment by others. Although the topic of sex differences in the brain is often seen as much more emotionally charged than studies of sex differences in other organs, the dichotomy is largely false. By putting the brain firmly back in the body, sex differences in the brain are predictable and can be more completely understood

    Patent foramen ovale: Unanswered questions

    Full text link
    The foramen ovale is a remnant of the fetal circulation that remains patent in 20-25% of the adult population. Although long overlooked as a potential pathway that could produce pathologic conditions, the presence of a patent foramen ovale (PFO) has been associated with a higher than expected frequency in a variety of clinical syndromes including cryptogenic stroke, migraines, sleep apnea, platypnea-orthodeoxia, deep sea diving associated decompression illness, and high altitude pulmonary edema. A unifying hypothesis is that a chemical or particulate matter from the venous circulation crosses the PFO conduit between the right and left atria to produce a variety of clinical syndromes. Although observational studies suggest a therapeutic benefit of PFO closure compared to medical therapy alone in patients with cryptogenic stroke, 3 randomized controlled trials (RCTs) did not confirm the superiority of PFO closure for the secondary prevention of stroke. However, meta-analyses of these RCTs demonstrate a significant benefit of PFO closure over medical therapy alone. Similarly, observational studies provide support for PFO closure for symptomatic relief of migraines. But one controversial randomized study failed to replicate the results of the observational studies while another two demonstrated a partial benefit. The goal of this review is to discuss the clinical conditions associated with PFO and provide internists and primary care physicians with current data on PFO trials, and clinical insight to help guide their patients who are found to have a PFO on echocardiographic testing

    Lower extremity joint moments during uphill cycling

    No full text
    Lower extremity joint moments were investigated in three cycling conditions: level seated, uphill seated and uphill standing. Based on a previous study (Caldwell, Li, McCole, &amp; Hagberg, 1998), it was hypothesized that joint moments in the uphill standing condition would be altered in both magnitude and pattern. Eight national caliber cyclists were filmed while riding their own bicycles mounted to a computerized ergometer. Applied forces were measured with an instrumented pedal, and inverse dynamics were used to calculate joint moments. In the uphill seated condition the joint moments were similar in profile to the level seated but with a modest increase in magnitude. In the uphill standing condition the peak ankle plantarflexor moment was much larger and occurred later in the downstroke than in the seated conditions. The extensor knee moment that marked the first portion of the down-stroke for the seated trials was extended much further into the downstroke while standing, and the subsequent knee flexor moment period was of lower magnitude and shorter duration. These moment changes in the standing condition can be explained by a combination of more forward hip and knee positions, increased magnitude of pedal force, and an altered pedal force vector direction. The data support the notion of an altered contribution of both muscular and non-muscular sources to the applied pedal force. Muscle length estimates and muscle activity data from an earlier study (Li &amp; Caldwell, 1996) support the unique roles of mono-articular muscles for energy generation and bi-articular muscles for balancing of adjacent joint moments in the control of pedal force vector direction.</jats:p

    Pedal and crank kinetics in uphill cycling

    No full text
    Alterations in kinetic patterns of pedal force and crank torque due to changes in surface grade (level vs. 8% uphill) and posture (seated vs. standing) were investigated during cycling on a computerized ergometer. Kinematic data from a planar cine analysis and force data from a pedal instrumented with piezoelectric crystals were recorded from multiple trials of 8 elite cyclists. These measures were used to calculate pedal force, pedal orientation, and crank torque profiles as a function of crank angle in three conditions: seated level, seated uphill, and standing uphill. The change in surface grade from level to 8% uphill resulted in a shift in pedal angle (toe up) and a moderately higher peak crank torque, due at least in part to a reduction in the cycling cadence. However, the overall patterns of pedal and crank kinetics were similar in the two seated conditions. In contrast, the alteration in posture from sitting to standing on the hill permitted the subjects to produce different patterns of pedal and crank kinetics, characterized by significantly higher peak pedal force and crank torque that occurred much later in the downstroke. These kinetic changes were associated with modified pedal orientation (toe down) throughout the crank cycle. Further, the kinetic changes were linked to altered nonmuscular (gravitational and inertial) contributions to the applied pedal force, caused by the removal of the saddle as a base of support.</jats:p
    corecore