4,067 research outputs found
Orbital periods of the binary sdB stars PG0940+068 and PG1247+554
We have used the radial velocity variations of two sdB stars previously
reported to be binaries to establish their orbital periods. They are
PG0940+068, (P=8.33d) and PG1247+554 (P=0.599d). The minimum masses of the
unseen companions, assuming a mass of 0.5 solar masses for the sdB stars, are
0.090 +/- 0.003 solar masses for PG1247+554 and 0.63 +/- 0.02 solar masses for
PG0940+068. The nature of the companions is not constrained further by our
data.Comment: 5 pages, 2 figure
A meta-analysis on heart rate variability biofeedback and depressive symptoms
Heart rate variability biofeedback (HRVB) has been used for a number of years to treat depressive symptoms, a common mental health issue, which is often comorbid with other psychopathological and medical conditions. The aim of the present meta-analysis is to test whether and to what extent HRVB is effective in reducing depressive symptoms in adult patients. We conducted a literature search on Pubmed, ProQuest, Ovid PsycInfo, and Embase up to October 2020, and identified 721 studies. Fourteen studies were included in the meta-analysis. Three meta-regressions were also performed to further test whether publication year, the questionnaire used to assess depressive symptoms, or the interval of time between T0 and T1 moderated the effect of HRVB. Overall, we analysed 14 RCTs with a total of 794 participants. The random effect analysis yielded a medium mean effect size g = 0.38 [95% CI = 0.16, 0.60; 95% PI = − 0.19, 0.96], z = 3.44, p = 0.0006. The total heterogeneity was significant, QT = 23.49, p = 0.03, I2 = 45%, which suggested a moderate variance among the included studies. The year of publication (χ2(1) = 4.08, p = 0.04) and the questionnaire used to assess symptoms (χ2(4) = 12.65, p = 0.01) significantly moderated the effect of the interventions and reduced heterogeneity. Overall, results showed that HRVB improves depressive symptoms in several psychophysiological conditions in adult samples and should be considered as a valid technique to increase psychological well-being
Multimode Squeezing Properties of a Confocal Opo: Beyond the Thin Crystal Approximation
Up to now, transverse quantum effects (usually labelled as "quantum imaging"
effects) which are generated by nonlinear devices inserted in resonant optical
cavities have been calculated using the "thin crystal approximation", i.e.
taking into account the effect of diffraction only inside the empty part of the
cavity, and neglecting its effect in the nonlinear propagation inside the
nonlinear crystal. We introduce in the present paper a theoretical method which
is not restricted by this approximation. It allows us in particular to treat
configurations closer to the actual experimental ones, where the crystal length
is comparable to the Rayleigh length of the cavity mode. We use this method in
the case of the confocal OPO, where the thin crystal approximation predicts
perfect squeezing on any area of the transverse plane, whatever its size and
shape. We find that there exists in this case a "coherence length" which gives
the minimum size of a detector on which perfect squeezing can be observed, and
which gives therefore a limit to the improvement of optical resolution that can
be obtained using such devices.Comment: soumis le 04.03.2005 a PR
Multi-photon, multi-mode polarization entanglement in parametric down-conversion
We study the quantum properties of the polarization of the light produced in
type II spontaneous parametric down-conversion in the framework of a multi-mode
model valid in any gain regime. We show that the the microscopic polarization
entanglement of photon pairs survives in the high gain regime (multi-photon
regime), in the form of nonclassical correlation of all the Stokes operators
describing polarization degrees of freedom
Modelling the radiative effects of biomass burning aerosols on carbon fluxes in the Amazon region
Every year, a dense smoke haze covers a large portion of South America originating from fires in the Amazon Basin and central parts of Brazil during the dry biomass burning season between August and October. Over a large portion of South America, the average aerosol optical depth at 550 nm exceeds 1.0 during the fire season, while the background value during the rainy season is below 0.2. Biomass burning aerosol particles increase scattering and absorption of the incident solar radiation. The regional-scale aerosol layer reduces the amount of solar energy reaching the surface, cools the near-surface air, and increases the diffuse radiation fraction over a large disturbed area of the Amazon rainforest. These factors affect the energy and CO2 fluxes at the surface. In this work, we applied a fully integrated atmospheric model to assess the impact of biomass burning aerosols in CO2 fluxes in the Amazon region during 2010. We address the effects of the attenuation of global solar radiation and the enhancement of the diffuse solar radiation flux inside the vegetation canopy. Our results indicate that biomass burning aerosols led to increases of about 27 % in the gross primary productivity of Amazonia and 10 % in plant respiration as well as a decline in soil respiration of 3 %. Consequently, in our model Amazonia became a net carbon sink; net ecosystem exchange during September 2010 dropped from +101 to −104 TgC when the aerosol effects are considered, mainly due to the aerosol diffuse radiation effect. For the forest biome, our results point to a dominance of the diffuse radiation effect on CO2 fluxes, reaching a balance of 50–50 % between the diffuse and direct aerosol effects for high aerosol loads. For C3 grasses and savanna (cerrado), as expected, the contribution of the diffuse radiation effect is much lower, tending to zero with the increase in aerosol load. Taking all biomes together, our model shows the Amazon during the dry season, in the presence of high biomass burning aerosol loads, changing from being a source to being a sink of CO2 to the atmosphere
Sensitivity studies on the photolysis rates calculation in Amazonian atmospheric chemistry ? Part I: The impact of the direct radiative effect of biomass burning aerosol particles
International audienceThe impact of the direct radiative effect of the aerosol particles on the calculation of the photolysis rates and consequently on the atmospheric chemistry in regional smoke clouds due to biomass burning over the Amazon basin is addressed in this work. It explores a case study for 19 September 2002 at LBA-RACCI-SMOCC (The Large-Scale Biosphere-Atmosphere experiment in Amazonia ? Radiation, Cloud, and Climate Interactions ? Smoke, Aerosols, Clouds, Rainfall and Climate) pasture site in SW Amazonia. The Tropospheric Ultraviolet Visible radiation model (TUV) version 4.2, (Madronich et al., 1987) is used for the photolysis rates calculation considering the layer aerosol optical depth from the Coupled Aerosol Tracer Transport model to the Brazilian Regional Atmospheric Modeling System (CATT-BRAMS) (Freitas et al., 2005). A dynamical aerosol model (Procópio et al., 2003) is included in the radiative transfer model to take into account the high temporal variability of the aerosol optical thickness. This methodology is tested by comparing modeled and measured clear sky solar irradiances. The results show a good agreement with measured PAR radiation values. The actinic flux attenuation, for AOT (500 nm) values around 1.94, decreases the photolysis rates by about 70% in the presence of near-ground smoke aerosol and above the smoke layer the photolysis process tends to increase by about 40%. A simulation of the ozone production is carried out using a one-dimensional photochemical box model and comparisons with observation are shown
Surface Enhanced Second Harmonic Generation from Macrocycle, Catenane, and Rotaxane Thin Films: Experiments and Theory
Surface enhanced second harmonic generation (SE SHG) experiments on molecular structures, macrocycles, catenanes, and rotaxanes, deposited as monolayers and multilayers by vacuum sublimation on silver, are reported. The measurements show that the molecules form ordered thin films, where the highest degree of order is observed in the case of macrocycle monolayers and the lowest in the case of rotaxane multilayers. The second harmonic generation activity is interpreted in terms of electric field induced second harmonic (EFISH) generation where the electric field is created by the substrate silver atoms. The measured second order nonlinear optical susceptibility for a rotaxane thin film is compared with that obtained by considering only EFISH contribution to SHG intensity. The electric field on the surface of a silver layer is calculated by using the Delphi4 program for structures obtained with TINKER molecular mechanics/dynamics simulations. An excellent agreement is observed between the calculated and the measured SHG susceptibilities.
Quantum Maxwell-Bloch equations for spatially inhomogeneous semiconductor lasers
We present quantum Maxwell-Bloch equations (QMBE) for spatially inhomogeneous
semiconductor laser devices. The QMBE are derived from fully quantum mechanical
operator dynamics describing the interaction of the light field with the
quantum states of the electrons and the holes near the band gap. By taking into
account field-field correlations and field-dipole correlations, the QMBE
include quantum noise effects which cause spontaneous emission and amplified
spontaneous emission. In particular, the source of spontaneous emission is
obtained by factorizing the dipole-dipole correlations into a product of
electron and hole densities. The QMBE are formulated for general devices, for
edge emitting lasers and for vertical cavity surface emitting lasers, providing
a starting point for the detailed analysis of spatial coherence in the near
field and far field patterns of such laser diodes. Analytical expressions are
given for the spectra of gain and spontaneous emission described by the QMBE.
These results are applied to the case of a broad area laser, for which the
frequency and carrier density dependent spontaneous emission factor beta and
the evolution of the far field pattern near threshold are derived.Comment: 22 pages RevTex and 7 figures, submitted to Phys.Rev.A, revisions in
abstract and in the discussion of temporal coherenc
- …