68 research outputs found

    Anticipatory reaching of seven- to eleven-month-old infants in occlusion situations

    Get PDF
    The present study examined 7- to 11-month-old infants' anticipatory and reactive reaching for temporarily occluded objects. Infants were presented with laterally approaching objects that moved at different velocities (10, 20, and 40. cm/s) in different occlusion situations (no-, 20. cm-, and 40. cm-occlusion), resulting in occlusion durations ranging between 0 and 4. s. Results show that except for object velocity and occlusion distance, occlusion duration was a critical constraint for infants' reaching behaviors. We found that the older infants reached more often, but that an increase in occlusion duration resulted in a decline in reaching frequency that was similar across age groups. Anticipatory reaching declined with increasing occlusion duration, but the adverse effects for longer occlusion durations diminished with age. It is concluded that with increasing age infants are able to retain and use information to guide reaching movements over longer periods of non-visibility, providing support for the graded representation hypothesis (Jonsson & von Hofsten, 2003) and the two-visual systems model (Milner & Goodale, 1995). © 2010 Elsevier Inc

    Photocatalytic Hydrogen Production Of Co(oh)2 Nanoparticle-coated α-fe2o3 Nanorings

    Get PDF
    The production of hydrogen from water using only a catalyst and solar energy is one of the most challenging and promising outlets for the generation of clean and renewable energy. Semiconductor photocatalysts for solar hydrogen production by water photolysis must employ stable, non-toxic, abundant and inexpensive visible-light absorbers capable of harvesting light photons with adequate potential to reduce water. Here, we show that α-Fe 2O3 can meet these requirements by means of using hydrothermally prepared nanorings. These iron oxide nanoring photocatalysts proved capable of producing hydrogen efficiently without application of an external bias. In addition, Co(OH)2 nanoparticles were shown to be efficient co-catalysts on the nanoring surface by improving the efficiency of hydrogen generation. Both nanoparticle-coated and uncoated nanorings displayed superior photocatalytic activity for hydrogen evolution when compared with TiO2 nanoparticles, showing themselves to be promising materials for water-splitting using only solar light. © The Royal Society of Chemistry 2013.51993109316Navarro Yerga, R.M., Álvarez Galván, M.C., Del Valle, F., Villoria De La Mano, J.A., Fierro, J.L.G., (2009) ChemSusChem, 2, pp. 471-485Fujishima, A., Honda, K., (1972) Nature, 238, pp. 37-38Kudo, A., Miseki, Y., (2009) Chem. Soc. Rev., 38, pp. 253-278Sivula, K., Le Formal, F., Gratzel, M., (2011) ChemSusChem, 4, pp. 432-449Yerga, R.M.N., Galvan, M.C.A., Del Valle, F., De La Mano, J.A.V., Fierro, J.L.G., (2009) ChemSusChem, 2, pp. 471-485Chen, X.B., Shen, S.H., Guo, L.J., Mao, S.S., (2010) Chem. Rev., 110, pp. 6503-6570Hernandez-Alonso, M.D., Fresno, F., Suarez, S., Coronado, J.M., (2009) Energy Environ. Sci., 2, pp. 1231-1257Kudo, A., (2003) Catal. Surv. Asia, 7, pp. 31-38Wender, H., Feil, A.F., Diaz, L.B., Ribeiro, C.S., Machado, G.J., Migowski, P., Weibel, D.E., Teixeira, S.R., (2011) ACS Appl. Mater. Interfaces, 3, pp. 1359-1365Khan, S.U.M., Al-Shahry, M., Ingler, W.B., (2002) Science, 297, pp. 2243-2245Sreethawong, T., Ngamsinlapasathian, S., Suzuki, Y., Yoshikawa, S., (2005) J. Mol. Catal. A: Chem., 235, pp. 1-11Li, Z.H., Chen, G., Tian, X.J., Li, Y.X., (2008) Mater. Res. Bull., 43, pp. 1781-1788Meng, F.K., Hong, Z.L., Arndt, J., Li, M., Zhi, M.J., Yang, F., Wu, N.Q., (2012) Nano Res., 5, pp. 213-221Pei, D.H., Luan, J.F., (2012) Int. J. Photoenergy, , 10.1155/2012/262831Sun, J.W., Liu, C., Yang, P.D., (2011) J. Am. Chem. Soc., 133, pp. 19306-19309Nann, T., Ibrahim, S.K., Woi, P.M., Xu, S., Ziegler, J., Pickett, C.J., (2010) Angew. Chem., Int. Ed., 49, pp. 1574-1577Higashi, M., Domen, K., Abe, R., (2011) Energy Environ. Sci., 4, pp. 4138-4147Maeda, K., Higashi, M., Siritanaratkul, B., Abe, R., Domen, K., (2011) J. Am. Chem. Soc., 133, pp. 12334-12337Ikeue, K., Shiiba, S., Machida, M., (2011) ChemSusChem, 4, pp. 269-273Yu, J.G., Yang, B., Cheng, B., (2012) Nanoscale, 4, pp. 2670-2677Yashima, M., Ogisu, K., Domen, K., (2008) Acta Crystallogr., Sect. B: Struct. Sci., 64, pp. 291-298Yan, Q., Zhu, J., Yin, Z., Yang, D., Sun, T., Yu, H., Hoster, H.E., Zhang, H., (2013) Energy Environ. Sci., 6 (3), pp. 987-993Tahir, A.A., Wijayantha, K.G.U., Saremi-Yarahmadi, S., Mazhar, M., McKee, V., (2009) Chem. Mater., 21, pp. 3763-3772Rangaraju, R.R., Panday, A., Raja, K.S., Misra, M., (2009) J. Phys. D: Appl. Phys., 42Satsangi, V.R., Kumari, S., Singh, A.P., Shrivastav, R., Dass, S., (2008) Int. J. Hydrogen Energy, 33, pp. 312-318Saremi-Yarahmadi, S., Vaidhyanathan, B., Wijayantha, K.G.U., (2010) Int. J. Hydrogen Energy, 35, pp. 10155-10165Lin, Y., Xu, Y., Mayer, M.T., Simpson, Z.I., McMahon, G., Zhou, S., Wang, D., (2012) J. Am. Chem. Soc., 134, pp. 5508-5511Kumar, P., Sharma, P., Solanki, A., Tripathi, A., Deva, D., Shrivastav, R., Dass, S., Satsangi, V.R., (2012) Int. J. Hydrogen Energy, 37, pp. 3626-3632Kronawitter, C.X., Vayssieres, L., Shen, S.H., Guo, L.J., Wheeler, D.A., Zhang, J.Z., Antoun, B.R., Mao, S.S., (2011) Energy Environ. Sci., 4, pp. 3889-3899Vayssieres, L., Sathe, C., Butorin, S.M., Shuh, D.K., Nordgren, J., Guo, J.H., (2005) Adv. Mater., 17, pp. 2320-2323Jia, C.-J., Sun, L.-D., Luo, F., Han, X.-D., Heyderman, L.J., Yan, Z.-G., Yan, C.-H., Raabe, J.R., (2008) J. Am. Chem. Soc., 130, pp. 16968-16977De La Peña, F., Barrett, N., Zagonel, L.F., Walls, M., Renault, O., (2010) Surf. Sci., 604, pp. 1628-1636De La Peña, F., Berger, M.H., Hochepied, J.F., Dynys, F., Stephan, O., Walls, M., (2011) Ultramicroscopy, 111, pp. 169-176Chen, S.-Y., Gloter, A., Zobelli, A., Wang, L., Chen, C.-H., Colliex, C., (2009) Phys. Rev. B: Condens. Matter Mater. Phys., 79, p. 104103Gonçalves, R.V., Migowski, P., Wender, H., Eberhardt, D., Weibel, D.E., Sonaglio V. F, C., Zapata, M.J.M., Teixeira, S.R., (2012) J. Phys. Chem. C, 116, pp. 14022-14030Zhao, Y., Feltes, T.E., Regalbuto, J.R., Meyer, R.J., Klie, R.F., (2010) J. Appl. Phys., 108, pp. 063704-063707Zhang, Z., (2007) Ultramicroscopy, 107, pp. 598-603Liu, B., Nakata, K., Liu, S., Sakai, M., Ochiai, T., Murakami, T., Takagi, K., Fujishima, A., (2012) J. Phys. Chem. C, 116, pp. 7471-7479An, W.-J., Wang, W.-N., Ramalingam, B., Mukherjee, S., Daubayev, B., Gangopadhyay, S., Biswas, P., (2012) Langmuir, 28, pp. 7528-7534Jang, J.S., Choi, S.H., Kim, D.H., Jang, J.W., Lee, K.S., Lee, J.S., (2009) J. Phys. Chem. C, 113, pp. 8990-8996Li, Z., Wang, Y., Liu, J., Chen, G., Li, Y., Zhou, C., (2009) Int. J. Hydrogen Energy, 34, pp. 147-152Shimizu, K.-I., Tsuji, Y., Hatamachi, T., Toda, K., Kodama, T., Sato, M., Kitayama, Y., (2004) Phys. Chem. Chem. Phys., 6, pp. 1064-106

    Longitudinal double-spin asymmetry and cross section for inclusive neutral pion production at midrapidity in polarized proton collisions at sqrt(s) = 200 GeV

    Get PDF
    We report a measurement of the longitudinal double-spin asymmetry A_LL and the differential cross section for inclusive Pi0 production at midrapidity in polarized proton collisions at sqrt(s) = 200 GeV. The cross section was measured over a transverse momentum range of 1 < p_T < 17 GeV/c and found to be in good agreement with a next-to-leading order perturbative QCD calculation. The longitudinal double-spin asymmetry was measured in the range of 3.7 < p_T < 11 GeV/c and excludes a maximal positive gluon polarization in the proton. The mean transverse momentum fraction of Pi0's in their parent jets was found to be around 0.7 for electromagnetically triggered events.Comment: 6 pages, 3 figures, submitted to Phys. Rev. D (RC

    Longitudinal scaling property of the charge balance function in Au + Au collisions at 200 GeV

    Get PDF
    We present measurements of the charge balance function, from the charged particles, for diverse pseudorapidity and transverse momentum ranges in Au + Au collisions at 200 GeV using the STAR detector at RHIC. We observe that the balance function is boost-invariant within the pseudorapidity coverage [-1.3, 1.3]. The balance function properly scaled by the width of the observed pseudorapidity window does not depend on the position or size of the pseudorapidity window. This scaling property also holds for particles in different transverse momentum ranges. In addition, we find that the width of the balance function decreases monotonically with increasing transverse momentum for all centrality classes.Comment: 6 pages, 3 figure

    Measurement of the Bottom contribution to non-photonic electron production in p+pp+p collisions at s\sqrt{s} =200 GeV

    Get PDF
    The contribution of BB meson decays to non-photonic electrons, which are mainly produced by the semi-leptonic decays of heavy flavor mesons, in p+pp+p collisions at s=\sqrt{s} = 200 GeV has been measured using azimuthal correlations between non-photonic electrons and hadrons. The extracted BB decay contribution is approximately 50% at a transverse momentum of pT5p_{T} \geq 5 GeV/cc. These measurements constrain the nuclear modification factor for electrons from BB and DD meson decays. The result indicates that BB meson production in heavy ion collisions is also suppressed at high pTp_{T}.Comment: 6 pages, 4 figures, accepted by PR

    Serial Analysis of Circulating Tumor Cells in Metastatic Breast Cancer Receiving First-Line Chemotherapy

    Get PDF
    BACKGROUND: We examined the prognostic significance of circulating tumor cell (CTC) dynamics during treatment in metastatic breast cancer (MBC) patients receiving first-line chemotherapy. METHODS: Serial CTC data from 469 patients (2202 samples) were used to build a novel latent mixture model to identify groups with similar CTC trajectory (tCTC) patterns during the course of treatment. Cox regression was used to estimate hazard ratios for progression-free survival (PFS) and overall survival (OS) in groups based on baseline CTCs, combined CTC status at baseline to the end of cycle 1, and tCTC. Akaike information criterion was used to select the model that best predicted PFS and OS. RESULTS: Latent mixture modeling revealed 4 distinct tCTC patterns: undetectable CTCs (56.9% ), low (23.7%), intermediate (14.5%), or high (4.9%). Patients with low, intermediate, and high tCTC patterns had statistically significant inferior PFS and OS compared with those with undetectable CTCs (P < .001). Akaike Information Criterion indicated that the tCTC model best predicted PFS and OS compared with baseline CTCs and combined CTC status at baseline to the end of cycle 1 models. Validation studies in an independent cohort of 1856 MBC patients confirmed these findings. Further validation using only a single pretreatment CTC measurement confirmed prognostic performance of the tCTC model. CONCLUSIONS: We identified 4 novel prognostic groups in MBC based on similarities in tCTC patterns during chemotherapy. Prognostic groups included patients with very poor outcome (intermediate + high CTCs, 19.4%) who could benefit from more effective treatment. Our novel prognostic classification approach may be used for fine-tuning of CTC-based risk stratification strategies to guide future prospective clinical trials in MBC

    System size dependence of associated yields in hadron-triggered jets

    Get PDF
    We present results on the system size dependence of high transverse momentum di-hadron correlations at sNN\sqrt{s_{NN}} = 200 GeV as measured by STAR at RHIC. Measurements in d+Au, Cu+Cu and Au+Au collisions reveal similar jet-like correlation yields at small angular separation (Δϕ0\Delta\phi\sim0, Δη0\Delta\eta\sim0) for all systems and centralities. Previous measurements have shown that the away-side yield is suppressed in heavy-ion collisions. We present measurements of the away-side suppression as a function of transverse momentum and centrality in Cu+Cu and Au+Au collisions. The suppression is found to be similar in Cu+Cu and Au+Au collisions at a similar number of participants. The results are compared to theoretical calculations based on the parton quenching model and the modified fragmentation model. The observed differences between data and theory indicate that the correlated yields presented here will provide important constraints on medium density profile and energy loss model parameters.Comment: 12 pages, 5 figure

    EPIdemiology of Surgery-Associated Acute Kidney Injury (EPIS-AKI) : Study protocol for a multicentre, observational trial

    Get PDF
    More than 300 million surgical procedures are performed each year. Acute kidney injury (AKI) is a common complication after major surgery and is associated with adverse short-term and long-term outcomes. However, there is a large variation in the incidence of reported AKI rates. The establishment of an accurate epidemiology of surgery-associated AKI is important for healthcare policy, quality initiatives, clinical trials, as well as for improving guidelines. The objective of the Epidemiology of Surgery-associated Acute Kidney Injury (EPIS-AKI) trial is to prospectively evaluate the epidemiology of AKI after major surgery using the latest Kidney Disease: Improving Global Outcomes (KDIGO) consensus definition of AKI. EPIS-AKI is an international prospective, observational, multicentre cohort study including 10 000 patients undergoing major surgery who are subsequently admitted to the ICU or a similar high dependency unit. The primary endpoint is the incidence of AKI within 72 hours after surgery according to the KDIGO criteria. Secondary endpoints include use of renal replacement therapy (RRT), mortality during ICU and hospital stay, length of ICU and hospital stay and major adverse kidney events (combined endpoint consisting of persistent renal dysfunction, RRT and mortality) at day 90. Further, we will evaluate preoperative and intraoperative risk factors affecting the incidence of postoperative AKI. In an add-on analysis, we will assess urinary biomarkers for early detection of AKI. EPIS-AKI has been approved by the leading Ethics Committee of the Medical Council North Rhine-Westphalia, of the Westphalian Wilhelms-University Münster and the corresponding Ethics Committee at each participating site. Results will be disseminated widely and published in peer-reviewed journals, presented at conferences and used to design further AKI-related trials. Trial registration number NCT04165369
    corecore