301 research outputs found
In Situ Hexavalent Chromium Reduction by Injection of Organic Substrates in the Aquifer
Among the innovative technologies for in situ remediation of hexavalent
chromium in groundwater, bio-induced reduction is under investigation. In this process
the reduction of Cr(VI) is stimulated by a strongly reducing environment, created by the
injection of organic substrates that are rapidly degraded by autochthonous heterotrophic
microorganisms. Tests were performed at the laboratory scale to investigate the
behavior of two different organic substrates from food industry (permeate from cheese
whey ultrafiltration and a waste from the brewing process), in terms of dissolved Cr(VI)
abatement and kinetics, also as a function of the initial Cr(VI) concentration (5000 or
10000 μg/L). The tests showed that, under proper conditions, very low Cr(VI)
concentrations (1.3 g/L) and removal efficiency up to about 100% can be obtained after
36 d incubation
Generative models : an upcoming innovation in musculoskeletal radiology? A preliminary test in spine imaging
Background
Deep learning is a ground-breaking technology that is revolutionising many research and industrial fields. Generative models are recently gaining interest. Here, we investigate their potential, namely conditional generative adversarial networks, in the field of magnetic resonance imaging (MRI) of the spine, by performing clinically relevant benchmark cases.
Methods
First, the enhancement of the resolution of T2-weighted (T2W) images (super-resolution) was tested. Then, automated image-to-image translation was tested in the following tasks: (1) from T1-weighted to T2W images of the lumbar spine and (2) vice versa; (3) from T2W to short time inversion-recovery (STIR) images; (4) from T2W to turbo inversion recovery magnitude (TIRM) images; (5) from sagittal standing x-ray projections to T2W images. Clinical and quantitative assessments of the outputs by means of image quality metrics were performed. The training of the models was performed on MRI and x-ray images from 989 patients.
Results
The performance of the models was generally positive and promising, but with several limitations. The number of disc protrusions or herniations showed good concordance (\u3ba = 0.691) between native and super-resolution images. Moderate-to-excellent concordance was found when translating T2W to STIR and TIRM images (\u3ba 65\u20090.842 regarding disc degeneration), while the agreement was poor when translating x-ray to T2W images.
Conclusions
Conditional generative adversarial networks are able to generate perceptually convincing synthetic images of the spine in super-resolution and image-to-image translation tasks. Taking into account the limitations of the study, deep learning-based generative methods showed the potential to be an upcoming innovation in musculoskeletal radiology
Neuroimaging Evidence of Major Morpho-Anatomical and Functional Abnormalities in the BTBR T+TF/J Mouse Model of Autism
BTBR T+tf/J (BTBR) mice display prominent behavioural deficits analogous to the defining symptoms of autism, a feature that has prompted a widespread use of the model in preclinical autism research. Because neuro-behavioural traits are described with respect to reference populations, multiple investigators have examined and described the behaviour of BTBR mice against that exhibited by C57BL/6J (B6), a mouse line characterised by high sociability and low self-grooming. In an attempt to probe the translational relevance of this comparison for autism research, we used Magnetic Resonance Imaging (MRI) to map in both strain multiple morpho-anatomical and functional neuroimaging readouts that have been extensively used in patient populations. Diffusion tensor tractography confirmed previous reports of callosal agenesis and lack of hippocampal commissure in BTBR mice, and revealed a concomitant rostro-caudal reorganisation of major cortical white matter bundles. Intact inter-hemispheric tracts were found in the anterior commissure, ventro-medial thalamus, and in a strain-specific white matter formation located above the third ventricle. BTBR also exhibited decreased fronto-cortical, occipital and thalamic gray matter volume and widespread reductions in cortical thickness with respect to control B6 mice. Foci of increased gray matter volume and thickness were observed in the medial prefrontal and insular cortex. Mapping of resting-state brain activity using cerebral blood volume weighted fMRI revealed reduced cortico-thalamic function together with foci of increased activity in the hypothalamus and dorsal hippocampus of BTBR mice. Collectively, our results show pronounced functional and structural abnormalities in the brain of BTBR mice with respect to control B6 mice. The large and widespread white and gray matter abnormalities observed do not appear to be representative of the neuroanatomical alterations typically observed in autistic patients. The presence of reduced fronto-cortical metabolism is of potential translational relevance, as this feature recapitulates previously-reported clinical observations
Synchronous diversification of Sulawesi's iconic artiodactyls driven by recent geological events
The high degree of endemism on Sulawesi has previously been suggested to have vicariant origins, dating back to 40 Ma. Recent studies, however, suggest that much of Sulawesi's fauna assembled over the last 15 Myr. Here, we test the hypothesis that more recent uplift of previously submerged portions of land on Sulawesi promoted diversification and that much of its faunal assemblage is much younger than the island itself. To do so, we combined palaeogeographical reconstructions with genetic and morphometric datasets derived from Sulawesi's three largest mammals: the babirusa, anoa and Sulawesi warty pig. Our results indicate that although these species most likely colonized the area that is now Sulawesi at different times (14 Ma to 2-3 Ma), they experienced an almost synchronous expansion from the central part of the island. Geological reconstructions indicate that this area was above sea level for most of the last 4 Myr, unlike most parts of the island. We conclude that emergence of land on Sulawesi (approx. 1-2 Myr) may have allowed species to expand synchronously. Altogether, our results indicate that the establishment of the highly endemic faunal assemblage on Sulawesi was driven by geological events over the last few million years
Synchronous diversification of Sulawesi’s iconic artiodactyls driven by recent geological events
The high degree of endemism on Sulawesi has previously been suggested to have vicariant origins, dating back 40 Myr ago. Recent studies, however, suggest that much of Sulawesi’s fauna assembled over the last 15 Myr. Here, we test the hypothesis that more recent uplift of previously submerged portions of land on Sulawesi promoted diversification, and that much of its faunal assemblage is much younger than the island itself. To do so, we combined palaeogeographical reconstructions with genetic and morphometric data sets derived from Sulawesi’s three largest mammals: the Babirusa, Anoa, and Sulawesi warty pig.
Our results indicate that although these species most likely colonized the area that is now Sulawesi at different times (14 Myr ago to 2-3 Myr ago), they experienced an almost synchronous expansion from the central part of the island. Geological reconstructions indicate that this area was above sea level for most of the last 4 Myr, unlike most parts of the island. We conclude that emergence of land on Sulawesi (~1–2 Myr) may have allowed species to expand synchronously. Altogether, our results indicate that the establishment of the highly endemic faunal assemblage on Sulawesi was driven by geological events over the last few million years
Synchronous diversification of Sulawesi's iconic artiodactyls driven by recent geological events
The high degree of endemism on Sulawesi has previously been suggested to have vicariant origins, dating back to 40 Ma. Recent studies, however, suggest that much of Sulawesi’s fauna assembled over the last 15 Myr. Here, we test the hypothesis that more recent uplift of previously submerged portions of land on Sulawesi promoted diversification and that much of its faunal assemblage is much younger than the island itself. To do so, we combined palaeogeographical reconstructionswithgenetic andmorphometric datasets derived from Sulawesi’s three largest mammals: the babirusa, anoa and Sulawesi warty pig. Our results indicate that although these species most likely colonized the area that is now Sulawesi at different times (14 Ma to 2-3 Ma), they experienced an almost synchronous expansion from the central part of the island. Geological reconstructions indicate that this area was above sea level for most of the last 4 Myr, unlike most parts of the island. We conclude that emergence of land on Sulawesi (approx. 1-2 Myr) may have allowed species to expand synchronously. Altogether, our results indicate that the establishment of the highly endemic faunal assemblage on Sulawesiwas driven by geological events over the last few million years
- …