1,925 research outputs found

    Coupling interactive fire with atmospheric composition and climate in the UK Earth System Model

    Get PDF
    Fire constitutes a key process in the Earth system (ES), being driven by climate as well as affecting the climate by changing atmospheric composition and impacting the terrestrial carbon cycle. However, studies on the effects of fires on atmospheric composition, radiative forcing and climate have been limited to date, as the current generation of ES models (ESMs) does not include fully atmosphere–composition–vegetation coupled fires feedbacks. The aim of this work is to develop and evaluate a fully coupled fire–composition–climate ES model. For this, the INteractive Fires and Emissions algoRithm for Natural envirOnments (INFERNO) fire model is coupled to the atmosphere-only configuration of the UK's Earth System Model (UKESM1). This fire–atmosphere interaction through atmospheric chemistry and aerosols allows for fire emissions to influence radiation, clouds and generally weather, which can consequently influence the meteorological drivers of fire. Additionally, INFERNO is updated based on recent developments in the literature to improve the representation of human and/or economic factors in the anthropogenic ignition and suppression of fire. This work presents an assessment of the effects of interactive fire coupling on atmospheric composition and climate compared to the standard UKESM1 configuration that uses prescribed fire emissions. Results show a similar performance when using the fire–atmosphere coupling (the “online” version of the model) when compared to the offline UKESM1 that uses prescribed fire. The model can reproduce observed present-day global fire emissions of carbon monoxide (CO) and aerosols, despite underestimating the global average burnt area. However, at a regional scale, there is an overestimation of fire emissions over Africa due to the misrepresentation of the underlying vegetation types and an underestimation over equatorial Asia due to a lack of representation of peat fires. Despite this, comparing model results with observations of CO column mixing ratio and aerosol optical depth (AOD) show that the fire–atmosphere coupled configuration has a similar performance when compared to UKESM1. In fact, including the interactive biomass burning emissions improves the interannual CO atmospheric column variability and consequently its seasonality over the main biomass burning regions – Africa and South America. Similarly, for aerosols, the AOD results broadly agree with the Moderate Resolution Imaging Spectroradiometer (MODIS) and the Aerosol Robotic Network (AERONET) observations

    Trypanosoma rangeli is phylogenetically closer to Old World trypanosomes than to Trypanosoma cruzi.

    Get PDF
    This is the author accepted manuscript. The final version is available from Elsevier via the DOI in this record.Trypanosoma rangeli and Trypanosoma cruzi are generalist trypanosomes sharing a wide range of mammalian hosts; they are transmitted by triatomine bugs, and are the only trypanosomes infecting humans in the Neotropics. Their origins, phylogenetic relationships, and emergence as human parasites have long been subjects of interest. In the present study, taxon-rich analyses (20 trypanosome species from bats and terrestrial mammals) using ssrRNA, glycosomal glyceraldehyde-3-phosphate dehydrogenase (gGAPDH), heat shock protein-70 (HSP70) and Spliced Leader RNA sequences, and multilocus phylogenetic analyses using 11 single copy genes from 15 selected trypanosomes, provide increased resolution of relationships between species and clades, strongly supporting two main sister lineages: lineage Schizotrypanum, comprising T. cruzi and bat-restricted trypanosomes, and Tra[Tve-Tco] formed by T. rangeli, Trypanosoma vespertilionis and Trypanosoma conorhini clades. Tve comprises European T. vespertilionis and African T. vespertilionis-like of bats and bat cimicids characterised in the present study and Trypanosoma sp. Hoch reported in monkeys and herein detected in bats. Tco included the triatomine-transmitted tropicopolitan T. conorhini from rats and the African NanDoum1 trypanosome of civet (carnivore). Consistent with their very close relationships, Tra[Tve-Tco] species shared highly similar Spliced Leader RNA structures that were highly divergent from those of Schizotrypanum. In a plausible evolutionary scenario, a bat trypanosome transmitted by cimicids gave origin to the deeply rooted Tra[Tve-Tco] and Schizotrypanum lineages, and bat trypanosomes of diverse genetic backgrounds jumped to new hosts. A long and independent evolutionary history of T. rangeli more related to Old World trypanosomes from bats, rats, monkeys and civets than to Schizotrypanum spp., and the adaptation of these distantly related trypanosomes to different niches of shared mammals and vectors, is consistent with the marked differences in transmission routes, life-cycles and host-parasite interactions, resulting in T. cruzi (but not T. rangeli) being pathogenic to humans.This study was supported by grants awarded to MMGT and EPC from CNPq (National Council for Scientific and Technological Development) PROAFRICA, PROSUL and UNIVERSAL programs, CAPES (Coordination for the Improvement of Higher Education Personnel) PNIPB, PNPD and PROTAX programs, and FAPESP (São Paulo Research Foundation; process 2016/07487-0). Genome sequencing was supported by the Assembling the Tree of Life (ATOL) Project of the National Science Foundation, USA (NSF DEB-0830056), and TCC-USP (Trypanosomatid Culture Collection of the University of São Paulo) projects. OEA received PhD fellowships from CNPq (PROTAX) and COLCIENCIAS (Administrative Department of Science, Technology and Innovation, Colombia); PAO is a postdoctoral fellow of CAPES (PNPD); LL and AGCM are supported by a postdoctoral fellowship from CAPES (PROTAX)

    Overground walking speed changes when subjected to body weight support conditions for nonimpaired and post stroke individuals

    Get PDF
    <p>Abstract</p> <p>Background</p> <p>Previous research has shown that body weight support (BWS) has the potential to improve gait speed for individuals post-stroke. However, body weight support also reduces the optimal walking speed at which energy use is minimized over the gait cycle indicating that BWS should reduce walking speed capability.</p> <p>Methods</p> <p>Nonimpaired subjects and subjects post-stroke walked at a self-selected speed over a 15 m walkway. Body weight support (BWS) was provided to subjects at 0%, 10%, 20%, 30%, and 40% of the subject's weight while they walked overground using a robotic body weight support system. Gait speed, cadence, and average step length were calculated for each subject using recorded data on their time to walk 10 m and the number of steps taken.</p> <p>Results</p> <p>When subjected to greater levels of BWS, self-selected walking speed decreased for the nonimpaired subjects. However, subjects post-stroke showed an average increase of 17% in self-selected walking speed when subjected to some level of BWS compared to the 0% BWS condition. Most subjects showed this increase at the 10% BWS level. Gait speed increases corresponded to an increase in step length, but not cadence.</p> <p>Conclusions</p> <p>The BWS training environment results in decreased self-selected walking speed in nonimpaired individuals, however self-selected overground walking speed is facilitated when provided with a small percentage of body weight support for people post-stroke.</p

    Genetic diversity of Brazilian isolates of feline immunodeficiency virus

    Get PDF
    We isolated Feline immunodeficiency virus (FIV) from three adult domestic cats, originating from two open shelters in Brazil. Viruses were isolated from PBMC following co-cultivation with the feline T-lymphoblastoid cell line MYA-1. All amplified env gene products were cloned directly into pGL8MYA. The nucleic acid sequences of seven clones were determined and then compared with those of previously described isolates. The sequences of all of the Brazilian virus clones were distinct and phylogenetic analysis revealed that all belong to subtype B. Three variants isolated from one cat and two variants were isolated from each of the two other cats, indicating that intrahost diversity has the potential to pose problems for the treatment and diagnosis of FIV infection

    Genome of the Avirulent Human-Infective Trypanosome—Trypanosoma rangeli

    Get PDF
    Background: Trypanosoma rangeli is a hemoflagellate protozoan parasite infecting humans and other wild and domestic mammals across Central and South America. It does not cause human disease, but it can be mistaken for the etiologic agent of Chagas disease, Trypanosoma cruzi. We have sequenced the T. rangeli genome to provide new tools for elucidating the distinct and intriguing biology of this species and the key pathways related to interaction with its arthropod and mammalian hosts.  Methodology/Principal Findings: The T. rangeli haploid genome is ,24 Mb in length, and is the smallest and least repetitive trypanosomatid genome sequenced thus far. This parasite genome has shorter subtelomeric sequences compared to those of T. cruzi and T. brucei; displays intraspecific karyotype variability and lacks minichromosomes. Of the predicted 7,613 protein coding sequences, functional annotations could be determined for 2,415, while 5,043 are hypothetical proteins, some with evidence of protein expression. 7,101 genes (93%) are shared with other trypanosomatids that infect humans. An ortholog of the dcl2 gene involved in the T. brucei RNAi pathway was found in T. rangeli, but the RNAi machinery is non-functional since the other genes in this pathway are pseudogenized. T. rangeli is highly susceptible to oxidative stress, a phenotype that may be explained by a smaller number of anti-oxidant defense enzymes and heatshock proteins.  Conclusions/Significance: Phylogenetic comparison of nuclear and mitochondrial genes indicates that T. rangeli and T. cruzi are equidistant from T. brucei. In addition to revealing new aspects of trypanosome co-evolution within the vertebrate and invertebrate hosts, comparative genomic analysis with pathogenic trypanosomatids provides valuable new information that can be further explored with the aim of developing better diagnostic tools and/or therapeutic targets

    Interplay of LFV and slepton mass splittings at the LHC as a probe of the SUSY seesaw

    Full text link
    We study the impact of a type-I SUSY seesaw concerning lepton flavour violation (LFV) both at low-energies and at the LHC. The study of the di-lepton invariant mass distribution at the LHC allows to reconstruct some of the masses of the different sparticles involved in a decay chain. In particular, the combination with other observables renders feasible the reconstruction of the masses of the intermediate sleptons involved in χ20~χ10 \chi_2^0\to \tilde \ell \,\ell \to \ell \,\ell\,\chi_1^0 decays. Slepton mass splittings can be either interpreted as a signal of non-universality in the SUSY soft breaking-terms (signalling a deviation from constrained scenarios as the cMSSM) or as being due to the violation of lepton flavour. In the latter case, in addition to these high-energy processes, one expects further low-energy manifestations of LFV such as radiative and three-body lepton decays. Under the assumption of a type-I seesaw as the source of neutrino masses and mixings, all these LFV observables are related. Working in the framework of the cMSSM extended by three right-handed neutrino superfields, we conduct a systematic analysis addressing the simultaneous implications of the SUSY seesaw for both high- and low-energy lepton flavour violation. We discuss how the confrontation of slepton mass splittings as observed at the LHC and low-energy LFV observables may provide important information about the underlying mechanism of LFV.Comment: 50 pages, 42 eps Figures, typos correcte

    Biochemical Effects of Carbohydrate Supplementation in a Simulated Competition of Short Terrestrial Duathlon

    Get PDF
    The purpose of the present study was to investigate the biochemical effects of carbohydrate supplementation in a simulated competition of short terrestrial duathlon. Ten duathletes participated in a simulated competition of short terrestrial duathlon 30 minutes after the ingestion of a 6% (30 g/500 ml) maltodextrin solution (MALT) or a placebo (PLA). This solution was also ingested every 15 minutes during the competition (12 g/200 ml); and immediately after the competition (18 g/300 ml). Samples of blood were collected at 3 time points: 1) at rest 1 hour before the beginning of the competition; 2) during the competition (approximately 1 hour and 45 minutes after the 1st collection); 3) immediately after the competition. Blood was analyzed for blood glucose, lactate, insulin and cortisol. Significant differences were observed in relation to blood glucose levels between MALT and PLA in the post-competition phase. There was also a significant difference in the lactate levels observed between MALT and PLA during the competition phase. Similarly, a significant difference in the cortisol concentrations during and after the competition phases (MALT and PLA) were observed. We conclude that maltodextrin supplementation appears to be beneficial during short terrestrial duathlon competition as evidenced by biochemical markers
    corecore