51 research outputs found

    Observing Pulsars with a Phased Array Feed at the Parkes Telescope

    Full text link
    During February 2016, CSIRO Astronomy and Space Science and the Max-Planck-Institute for Radio Astronomy installed, commissioned and carried out science observations with a phased array feed (PAF) receiver system on the 64m diameter Parkes radio telescope. Here we demonstrate that the PAF can be used for pulsar observations and we highlight some unique capabilities. We demonstrate that the pulse profiles obtained using the PAF can be calibrated and that multiple pulsars can be simultaneously observed. Significantly, we find that an intrinsic polarisation leakage of -31dB can be achieved with a PAF beam offset from the centre of the field of view. We discuss the possibilities for using a PAF for future pulsar observations and for searching for fast radio bursts with the Parkes and Effelsberg telescopes.Comment: 10 pages, 8 figures, 2 tables. It has been accepted for publication in PAS

    Observing superluminous supernovae and long gamma ray bursts as potential birthplaces of repeating fast radio bursts

    Full text link
    Superluminous supernovae (SLSNe) and long gamma ray bursts (LGRBs) have been proposed as progenitors of repeating Fast Radio Bursts (FRBs). In this scenario, bursts originate from the interaction between a young magnetar and its surrounding supernova remnant (SNR). Such a model could explain the repeating, apparently non-Poissonian nature of FRB121102, which appears to display quiescent and active phases. This bursting behaviour is better explained with a Weibull distribution, which includes parametrisation for clustering. We observed 10 SLSNe/LGRBs for 63 hours, looking for repeating FRBs with the Effelsberg-100 m radio telescope, but have not detected any bursts. We scale the burst rate of FRB121102 to an FRB121102-like source inhabiting each of our observed targets, and compare this rate to our upper burst rate limit on a source by source basis. By adopting a fiducial beaming fraction of 0.6, we obtain 99.99\% and 83.4\% probabilities that at least one, and at least half of our observed sources are beamed towards us respectively. One of our SLSN targets, PTF10hgi, is coincident with a persistent radio source, making it a possible analogue to FRB121102. We performed further observations on this source using the Effelsberg-100~m and Parkes-64~m radio telescopes. Assuming that PTF10hgi contains an FRB121102-like source, the probabilities of not detecting any bursts from a Weibull distribution during our observations are 14\% and 16\% for Effelsberg and Parkes respectively. We conclude by showing that a survey of many short observations increases burst detection probability for a source with Weibull distributed bursting activity.Comment: 11 pages, 5 figure

    First observations with CONDOR, a 1.5 THz heterodyne receiver

    Get PDF
    The THz atmospheric windows centered at roughly 1.3 and 1.5~THz, contain numerous spectral lines of astronomical importance, including three high-J CO lines, the N+ line at 205 microns, and the ground transition of para-H2D+. The CO lines are tracers of hot (several 100K), dense gas; N+ is a cooling line of diffuse, ionized gas; the H2D+ line is a non-depleting tracer of cold (~20K), dense gas. As the THz lines benefit the study of diverse phenomena (from high-mass star-forming regions to the WIM to cold prestellar cores), we have built the CO N+ Deuterium Observations Receiver (CONDOR) to further explore the THz windows by ground-based observations. CONDOR was designed to be used at the Atacama Pathfinder EXperiment (APEX) and Stratospheric Observatory For Infrared Astronomy (SOFIA). CONDOR was installed at the APEX telescope and test observations were made to characterize the instrument. The combination of CONDOR on APEX successfully detected THz radiation from astronomical sources. CONDOR operated with typical Trec=1600K and spectral Allan variance times of 30s. CONDOR's first light observations of CO 13-12 emission from the hot core Orion FIR4 (= OMC1 South) revealed a narrow line with T(MB) = 210K and delta(V)=5.4km/s. A search for N+ emission from the ionization front of the Orion Bar resulted in a non-detection. The successful deployment of CONDOR at APEX demonstrates the potential for making observations at THz frequencies from ground-based facilities.Comment: 4 pages + list of objects, 3 figures, to be published in A&A special APEX issu

    Correction of joint angles from kinect for balance exercising and assessment

    Full text link
    [EN] The new generation of videogame interfaces such as Microsoft's Kinect opens the possibility of implementing exercise programs for physical training, and of evaluating and reducing the risks of elderly people falling. However, applications such as these might require measurements of joint kinematics that are more robust and accurate than the standard output given by the available middleware. This article presents a method based on particle filters for calculating joint angles from the positions of the anatomical points detected by PrimeSense's NITE software. The application of this method to the measurement of lower limb kinematics reduced the error by one order of magnitude, to less than 10 degrees, except for hip axial rotation, and it was advantageous over inverse kinematic analysis, in ensuring a robust and smooth solution without singularities, when the limbs are out-stretched and anatomical landmarks are aligned.This work has been undertaken within the framework of the iStoppFalls project, which has received funding from the European Community (grant agreement FP7-ICT-2011-7-287361) and the Australian Government.De Rosario Martínez, H.; Belda Lois, JM.; Fos Ros, F.; Medina Ripoll, E.; Poveda Puente, R.; Kroll, M. (2014). Correction of joint angles from kinect for balance exercising and assessment. Journal of Applied Biomechanics. 30(2):294-299. https://doi.org/10.1123/jab.2013-0062S29429930

    First 230 GHz VLBI Fringes on 3C 279 using the APEX Telescope

    Full text link
    We report about a 230 GHz very long baseline interferometry (VLBI) fringe finder observation of blazar 3C 279 with the APEX telescope in Chile, the phased submillimeter array (SMA), and the SMT of the Arizona Radio Observatory (ARO). We installed VLBI equipment and measured the APEX station position to 1 cm accuracy (1 sigma). We then observed 3C 279 on 2012 May 7 in a 5 hour 230 GHz VLBI track with baseline lengths of 2800 Mλ\lambda to 7200 Mλ\lambda and a finest fringe spacing of 28.6 micro-arcseconds. Fringes were detected on all baselines with SNRs of 12 to 55 in 420 s. The correlated flux density on the longest baseline was ~0.3 Jy/beam, out of a total flux density of 19.8 Jy. Visibility data suggest an emission region <38 uas in size, and at least two components, possibly polarized. We find a lower limit of the brightness temperature of the inner jet region of about 10^10 K. Lastly, we find an upper limit of 20% on the linear polarization fraction at a fringe spacing of ~38 uas. With APEX the angular resolution of 230 GHz VLBI improves to 28.6 uas. This allows one to resolve the last-photon ring around the Galactic Center black hole event horizon, expected to be 40 uas in diameter, and probe radio jet launching at unprecedented resolution, down to a few gravitational radii in galaxies like M 87. To probe the structure in the inner parsecs of 3C 279 in detail, follow-up observations with APEX and five other mm-VLBI stations have been conducted (March 2013) and are being analyzed.Comment: accepted for publication in A&

    A new experimental approach to probe QCD axion dark matter in the mass range above 40µeV

    Get PDF
    The axion emerges in extensions of the Standard Model that explain the absence of CP violation in the strong interactions. Simultaneously, it can provide naturally the cold dark matter in our universe. Several searches for axions and axion-like particles (ALPs) have constrained the corresponding parameter space over the last decades but no unambiguous hints of their existence have been found. The axion mass range below 1 meV remains highly attractive and a well motivated region for dark matter axions. In this White Paper we present a description of a new experiment based on the concept of a dielectric haloscope for the direct search of dark matter axions in the mass range of 40 to 400 µ eV. This MAgnetized Disk and Mirror Axion eXperiment (MADMAX) will consist of several parallel dielectric disks, which are placed in a strong magnetic field and with adjustable separations. This setting is expected to allow for an observable emission of axion induced electromagnetic waves at a frequency between 10 to 100 GHz corresponding to the axion mass

    The molecular environment of the massive star forming region NGC 2024: Multi CO transition analysis

    Full text link
    NGC 2024, a sites of massive star formation, have complex internal structures caused by cal heating by young stars, outflows, and stellar winds. These complex cloud structures lead to intricate emission line shapes. The goal of this paper is to show that the complex line shapes of 12 CO lines in NGC 2024 can be explained consistently with a model, whose temperature and velocity structure are based on the well-established scenario of a PDR and the Blister model. We present velocity-resolved spectra of seven CO lines ranging from J=3 to J=13, and we combined these data with CO high-frequency data from the ISO satellite. We find that the bulk of the molecular cloud associated with NGC 2024 consists of warm (75 K) and dense (9e5 cm-3) gas. An additional hot (~ 300 K) component, located at the interface of the HII region and the molecular cloud, is needed to explain the emission of the high-J CO lines. Deep absorption notches indicate that very cold material (20 K) exists in front of the warm material, too. A temperature and column density structure consistent with those predicted by PDR models, combined with the velocity structure of a Blister model, appropriately describes the observed emission line profiles of this massive star forming region. This case study of NGC 2024 shows that, with physical insights into these complex regions and careful modeling, multi-line observations of CO can be used to derive detailed physical conditions in massive star forming regions.Comment: 10 pages, 5 figures, accepted by A&A for publicatio

    Simulating MADMAX in 3D: Requirements for dielectric axion haloscopes

    Get PDF
    We present 3D calculations for dielectric haloscopes such as the currently envisioned MADMAX experiment. For ideal systems with perfectly flat, parallel and isotropic dielectric disks of finite diameter, we find that a geometrical form factor reduces the emitted power by up to 30 % compared to earlier 1D calculations. We derive the emitted beam shape, which is important for antenna design. We show that realistic dark matter axion velocities of 10-3 c and inhomogeneities of the external magnetic field at the scale of 10 % have negligible impact on the sensitivity of MADMAX. We investigate design requirements for which the emitted power changes by less than 20 % for a benchmark boost factor with a bandwidth of 50 MHz at 22 GHz, corresponding to an axion mass of 90 µ eV. We find that the maximum allowed disk tilt is 100 µ m divided by the disk diameter, the required disk planarity is 20 µ m (min-to-max) or better, and the maximum allowed surface roughness is 100 µ m (min-to-max). We show how using tiled dielectric disks glued together from multiple smaller patches can affect the beam shape and antenna coupling. © 2021 The Author(s)

    The My Active and Healthy Aging (My-AHA) ICT platform to detect and prevent frailty in older adults: Randomized control trial design and protocol

    Get PDF
    [EN] Introduction Frailty increases the risk of poor health outcomes, disability, hospitalization, and death in older adults and affects 7%¿12% of the aging population. Secondary impacts of frailty on psychological health and socialization are significant negative contributors to poor outcomes for frail older adults. Method The My Active and Healthy Aging (My-AHA) consortium has developed an information and communications technology¿based platform to support active and healthy aging through early detection of prefrailty and provision of individually tailored interventions, targeting multidomain risks for frailty across physical activity, cognitive activity, diet and nutrition, sleep, and psychosocial activities. Six hundred adults aged 60 years and older will be recruited to participate in a multinational, multisite 18-month randomized controlled trial to test the efficacy of the My-AHA platform to detect prefrailty and the efficacy of individually tailored interventions to prevent development of clinical frailty in this cohort. A total of 10 centers from Italy, Germany, Austria, Spain, United Kingdom, Belgium, Sweden, Japan, South Korea, and Australia will participate in the randomized controlled trial. Results Pilot testing (Alpha Wave) of the My-AHA platform and all ancillary systems has been completed with a small group of older adults in Europe with the full randomized controlled trial scheduled to commence in 2018. Discussion The My-AHA study will expand the understanding of antecedent risk factors for clinical frailty so as to deliver targeted interventions to adults with prefrailty. Through the use of an information and communications technology platform that can connect with multiple devices within the older adult's own home, the My-AHA platform is designed to measure an individual's risk factors for frailty across multiple domains and then deliver personalized domain-specific interventions to the individual. The My-AHA platform is technology-agnostic, enabling the integration of new devices and sensor platforms as they emerge.This project has received funding from the European Union's Horizon 2020 research and innovation program under grant agreement No 689582 and the Australian National Health and Medical Research Council (NHRMC) European Union grant scheme (1115818). M.J.S. reports personal fees from Eli Lilly (Australia) Pty Ltd and grants from Novotech Pty Ltd, outside the submitted work. All other authors report nothing to disclose.Summers, MJ.; Rainero, I.; Vercelli, AE.; Aumayr, GA.; De Rosario Martínez, H.; Mönter, M.; Kawashima, R. (2018). The My Active and Healthy Aging (My-AHA) ICT platform to detect and prevent frailty in older adults: Randomized control trial design and protocol. Alzheimer's and Dementia: Translational Research and Clinical Interventions. 4:252-262. https://doi.org/10.1016/j.trci.2018.06.004S2522624Blair, S. N. (1995). Changes in Physical Fitness and All-Cause Mortality. JAMA, 273(14), 1093. doi:10.1001/jama.1995.03520380029031Fried, L. P., Ferrucci, L., Darer, J., Williamson, J. D., & Anderson, G. (2004). Untangling the Concepts of Disability, Frailty, and Comorbidity: Implications for Improved Targeting and Care. The Journals of Gerontology Series A: Biological Sciences and Medical Sciences, 59(3), M255-M263. doi:10.1093/gerona/59.3.m255Gillick, M. (2001). Guest Editorial: Pinning Down Frailty. The Journals of Gerontology Series A: Biological Sciences and Medical Sciences, 56(3), M134-M135. doi:10.1093/gerona/56.3.m134Hamerman, D. (1999). Toward an Understanding of Frailty. Annals of Internal Medicine, 130(11), 945. doi:10.7326/0003-4819-130-11-199906010-00022Fried, L. P., Tangen, C. M., Walston, J., Newman, A. B., Hirsch, C., Gottdiener, J., … McBurnie, M. A. (2001). Frailty in Older Adults: Evidence for a Phenotype. The Journals of Gerontology Series A: Biological Sciences and Medical Sciences, 56(3), M146-M157. doi:10.1093/gerona/56.3.m146Panza, F., Solfrizzi, V., Barulli, M. R., Santamato, A., Seripa, D., Pilotto, A., & Logroscino, G. (2015). Cognitive Frailty: A Systematic Review of Epidemiological and Neurobiological Evidence of an Age-Related Clinical Condition. Rejuvenation Research, 18(5), 389-412. doi:10.1089/rej.2014.1637Soong, J., Poots, A., Scott, S., Donald, K., Woodcock, T., Lovett, D., & Bell, D. (2015). Quantifying the prevalence of frailty in English hospitals. BMJ Open, 5(10), e008456. doi:10.1136/bmjopen-2015-008456Varadhan, R., Walston, J., Cappola, A. R., Carlson, M. C., Wand, G. S., & Fried, L. P. (2008). Higher Levels and Blunted Diurnal Variation of Cortisol in Frail Older Women. The Journals of Gerontology Series A: Biological Sciences and Medical Sciences, 63(2), 190-195. doi:10.1093/gerona/63.2.190BROWN, I., RENWICK, R., & RAPHAEL, D. (1995). Frailty. International Journal of Rehabilitation Research, 18(2), 93-102. doi:10.1097/00004356-199506000-00001Buchner, D. M., & Wagner, E. H. (1992). Preventing Frail Health. Clinics in Geriatric Medicine, 8(1), 1-18. doi:10.1016/s0749-0690(18)30494-4Kojima, G., Iliffe, S., Jivraj, S., & Walters, K. (2016). Association between frailty and quality of life among community-dwelling older people: a systematic review and meta-analysis. Journal of Epidemiology and Community Health, 70(7), 716-721. doi:10.1136/jech-2015-206717Ory, M. G., Schechtman, K. B., Miller, J. P., Hadley, E. C., Fiatarone, M. A., … Province, M. A. (1993). Frailty and Injuries in Later Life: The FICSIT Trials. Journal of the American Geriatrics Society, 41(3), 283-296. doi:10.1111/j.1532-5415.1993.tb06707.xShamliyan, T., Talley, K. M. C., Ramakrishnan, R., & Kane, R. L. (2013). Association of frailty with survival: A systematic literature review. Ageing Research Reviews, 12(2), 719-736. doi:10.1016/j.arr.2012.03.001Woodhouse, K. W., & O’Mahony, M. S. (1997). Frailty and ageing. Age and Ageing, 26(4), 245-246. doi:10.1093/ageing/26.4.245CAMPBELL, A. J., & BUCHNER, D. M. (1997). Unstable disability and the fluctuations of frailty. Age and Ageing, 26(4), 315-318. doi:10.1093/ageing/26.4.315Drey, M., Pfeifer, K., Sieber, C. C., & Bauer, J. M. (2011). The Fried Frailty Criteria as Inclusion Criteria for a Randomized Controlled Trial: Personal Experience and Literature Review. Gerontology, 57(1), 11-18. doi:10.1159/000313433Albert, M. S., DeKosky, S. T., Dickson, D., Dubois, B., Feldman, H. H., Fox, N. C., … Phelps, C. H. (2011). The diagnosis of mild cognitive impairment due to Alzheimer’s disease: Recommendations from the National Institute on Aging-Alzheimer’s Association workgroups on diagnostic guidelines for Alzheimer’s disease. Alzheimer’s & Dementia, 7(3), 270-279. doi:10.1016/j.jalz.2011.03.008Petersen, R. C., Smith, G. E., Waring, S. C., Ivnik, R. J., Tangalos, E. G., & Kokmen, E. (1999). Mild Cognitive Impairment. Archives of Neurology, 56(3), 303. doi:10.1001/archneur.56.3.303Winblad, B., Palmer, K., Kivipelto, M., Jelic, V., Fratiglioni, L., Wahlund, L.-O., … Petersen, R. C. (2004). Mild cognitive impairment - beyond controversies, towards a consensus: report of the International Working Group on Mild Cognitive Impairment. Journal of Internal Medicine, 256(3), 240-246. doi:10.1111/j.1365-2796.2004.01380.xDubois, B., Hampel, H., Feldman, H. H., Scheltens, P., Aisen, P., … Andrieu, S. (2016). Preclinical Alzheimer’s disease: Definition, natural history, and diagnostic criteria. Alzheimer’s & Dementia, 12(3), 292-323. doi:10.1016/j.jalz.2016.02.002Moher, D., Hopewell, S., Schulz, K. F., Montori, V., Gotzsche, P. C., Devereaux, P. J., … Altman, D. G. (2010). CONSORT 2010 Explanation and Elaboration: updated guidelines for reporting parallel group randomised trials. BMJ, 340(mar23 1), c869-c869. doi:10.1136/bmj.c869Gray, L. C., Bernabei, R., Berg, K., Finne-Soveri, H., Fries, B. E., Hirdes, J. P., … Ariño-Blasco, S. (2008). Standardizing Assessment of Elderly People in Acute Care: The interRAI Acute Care Instrument. Journal of the American Geriatrics Society, 56(3), 536-541. doi:10.1111/j.1532-5415.2007.01590.xRadloff, L. S. (1977). The CES-D Scale. Applied Psychological Measurement, 1(3), 385-401. doi:10.1177/014662167700100306Guralnik, J. M., Simonsick, E. M., Ferrucci, L., Glynn, R. J., Berkman, L. F., Blazer, D. G., … Wallace, R. B. (1994). A Short Physical Performance Battery Assessing Lower Extremity Function: Association With Self-Reported Disability and Prediction of Mortality and Nursing Home Admission. Journal of Gerontology, 49(2), M85-M94. doi:10.1093/geronj/49.2.m85Powell, L. E., & Myers, A. M. (1995). The Activities-specific Balance Confidence (ABC) Scale. The Journals of Gerontology Series A: Biological Sciences and Medical Sciences, 50A(1), M28-M34. doi:10.1093/gerona/50a.1.m28Kendzierski, D., & DeCarlo, K. J. (1991). Physical Activity Enjoyment Scale: Two Validation Studies. Journal of Sport and Exercise Psychology, 13(1), 50-64. doi:10.1123/jsep.13.1.50Folstein, M. F., Folstein, S. E., & McHugh, P. R. (1975). «Mini-mental state». Journal of Psychiatric Research, 12(3), 189-198. doi:10.1016/0022-3956(75)90026-6Brandt, J. (1991). The hopkins verbal learning test: Development of a new memory test with six equivalent forms. Clinical Neuropsychologist, 5(2), 125-142. doi:10.1080/13854049108403297Lubben, J. E. (1988). Assessing social networks among elderly populations. Family & Community Health, 11(3), 42-52. doi:10.1097/00003727-198811000-00008Russell, D., Peplau, L. A., & Cutrona, C. E. (1980). The revised UCLA Loneliness Scale: Concurrent and discriminant validity evidence. Journal of Personality and Social Psychology, 39(3), 472-480. doi:10.1037/0022-3514.39.3.472De Vries, O. J., Peeters, G. M. E. E., Lips, P., & Deeg, D. J. H. (2013). Does frailty predict increased risk of falls and fractures? A prospective population-based study. Osteoporosis International, 24(9), 2397-2403. doi:10.1007/s00198-013-2303-zTheou, O., Stathokostas, L., Roland, K. P., Jakobi, J. M., Patterson, C., Vandervoort, A. A., & Jones, G. R. (2011). The Effectiveness of Exercise Interventions for the Management of Frailty: A Systematic Review. Journal of Aging Research, 2011, 1-19. doi:10.4061/2011/569194Cadore, E. (2014). Strength and Endurance Training Prescription in Healthy and Frail Elderly. Aging and Disease, 5(3), 183. doi:10.14336/ad.2014.0500183Cadore, E. L., Rodríguez-Mañas, L., Sinclair, A., & Izquierdo, M. (2013). Effects of Different Exercise Interventions on Risk of Falls, Gait Ability, and Balance in Physically Frail Older Adults: A Systematic Review. Rejuvenation Research, 16(2), 105-114. doi:10.1089/rej.2012.1397Gardner, M. M. (2001). Practical implementation of an exercise-based falls prevention programme. Age and Ageing, 30(1), 77-83. doi:10.1093/ageing/30.1.77Eng, J. J. (2010). Fitness and Mobility Exercise Program for Stroke. Topics in Geriatric Rehabilitation, 26(4), 310-323. doi:10.1097/tgr.0b013e3181fee736Wadlinger, H. A., & Isaacowitz, D. M. (2008). Looking happy: The experimental manipulation of a positive visual attention bias. Emotion, 8(1), 121-126. doi:10.1037/1528-3542.8.1.121MacLeod, C. (2012). Cognitive bias modification procedures in the management of mental disorders. Current Opinion in Psychiatry, 25(2), 114-120. doi:10.1097/yco.0b013e32834fda4aMensink, R. P., & Katan, M. B. (1989). Effect of a Diet Enriched with Monounsaturated or Polyunsaturated Fatty Acids on Levels of Low-Density and High-Density Lipoprotein Cholesterol in Healthy Women and Men. New England Journal of Medicine, 321(7), 436-441. doi:10.1056/nejm19890817321070
    • …
    corecore