364 research outputs found
Synthesis of Molecular Oxygen via Irradiation of Ice Grains in the Protosolar Nebula
Molecular oxygen has been detected in the coma of comet 67P/ChuryumovâGerasimenko with a mean abundance
of 3.80±0.85% by the ROSINA mass spectrometer on board the Rosetta spacecraft. To account for the presence
of this species in comet 67P/ChuryumovâGerasimenko, it has been shown that the radiolysis of ice grain
precursors of comets is a viable mechanism in low-density environments, such as molecular clouds. Here, we
investigate the alternative possibility that the icy grains present in the midplane of the protosolar nebula were
irradiated during their vertical transport between the midplane and the upper layers over a large number of cycles,
as a result of turbulent mixing. Consequently, these grains spent a non-negligible fraction of their lifetime in the
diskâs upper regions, where the irradiation by cosmic rays was strong. To do so, we used a coupled disk-transportirradiation
model to calculate the time evolution of the molecular oxygen abundance radiolytically produced in ice
grains. Our computations show that, even if a significant fraction of the icy particles has followed a back and forth
cycle toward the upper layers of the disk over tens of millions of years, a timespan far exceeding the formation
timescale of comet 67P/ChuryumovâGerasimenko, the amount of produced molecular oxygen is at least two
orders of magnitude lower than the Rosetta observations. We conclude that the most likely scenario remains the
formation of molecular oxygen in low-density environments, such as the presolar cloud, prior to the genesis of the
protosolar nebula
Selfâconsistent multifluid MHD simulations of Europa's exospheric interaction with Jupiter's magnetosphere
The Jovian moon, Europa, hosts a thin neutral gas atmosphere, which is tightly coupled to Jupiter's magnetosphere. Magnetospheric ions impacting the surface sputter off neutral atoms, which, upon ionization, carry currents that modify the magnetic field around the moon. The magnetic field in the plasma is also affected by Europa's induced magnetic field. In this paper we investigate the environment of Europa using our multifluid MHD model and focus on the effects introduced by both the magnetospheric and the pickup ion populations. The model selfâconsistently derives the electron temperature that governs the electron impact ionization process, which is the major source of ionization in this environment. The resulting magnetic field is compared to measurements performed by the Galileo magnetometer, the bulk properties of the modeled thermal plasma population is compared to the Galileo Plasma Subsystem observations, and the modeled surface precipitation fluxes are compared to Galileo Ultraviolet Spectrometer observations. The model shows good agreement with the measured magnetic field and reproduces the basic features of the plasma interaction observed at the moon for both the E4 and the E26 flybys of the Galileo spacecraft. The simulation also produces perturbations asymmetric about the flow direction that account for observed asymmetries.Key PointsFirst multifluid MHD simulation of Europa's plasma interaction presentedMatches plasma and magnetic field observations during Galileo E4 and E26 flybysPlasma flow and temperatures different for magnetospheric and pick up ionsPeer Reviewedhttp://deepblue.lib.umich.edu/bitstream/2027.42/111914/1/jgra51773.pd
Lithic technological responses to Late Pleistocene glacial cycling at Pinnacle Point Site 5-6, South Africa
There are multiple hypotheses for human responses to glacial cycling in the Late Pleistocene, including changes in population size, interconnectedness, and mobility. Lithic technological analysis informs us of human responses to environmental change because lithic assemblage characteristics are a reflection of raw material transport, reduction, and discard behaviors that depend on hunter-gatherer social and economic decisions. Pinnacle Point Site 5-6 (PP5-6), Western Cape, South Africa is an ideal locality for examining the influence of glacial cycling on early modern human behaviors because it preserves a long sequence spanning marine isotope stages (MIS) 5, 4, and 3 and is associated with robust records of paleoenvironmental change. The analysis presented here addresses the question, what, if any, lithic assemblage traits at PP5-6 represent changing behavioral responses to the MIS 5-4-3 interglacial-glacial cycle? It statistically evaluates changes in 93 traits with no a priori assumptions about which traits may significantly associate with MIS. In contrast to other studies that claim that there is little relationship between broad-scale patterns of climate change and lithic technology, we identified the following characteristics that are associated with MIS 4: increased use of quartz, increased evidence for outcrop sources of quartzite and silcrete, increased evidence for earlier stages of reduction in silcrete, evidence for increased flaking efficiency in all raw material types, and changes in tool types and function for silcrete. Based on these results, we suggest that foragers responded to MIS 4 glacial environmental conditions at PP5-6 with increased population or group sizes, 'place provisioning', longer and/or more intense site occupations, and decreased residential mobility. Several other traits, including silcrete frequency, do not exhibit an association with MIS. Backed pieces, once they appear in the PP5-6 record during MIS 4, persist through MIS 3. Changing paleoenvironments explain some, but not all temporal technological variability at PP5-6.Social Science and Humanities Research Council of Canada; NORAM; American-Scandinavian Foundation; Fundacao para a Ciencia e Tecnologia [SFRH/BPD/73598/2010]; IGERT [DGE 0801634]; Hyde Family Foundations; Institute of Human Origins; National Science Foundation [BCS-9912465, BCS-0130713, BCS-0524087, BCS-1138073]; John Templeton Foundation to the Institute of Human Origins at Arizona State Universit
Callisto's Atmosphere and Its Space Environment: Prospects for the Particle Environment Package on Board JUICE
The JUpiter ICy moons Explorer (JUICE) of the European Space Agency will investigate Jupiter and its icy moons Europa, Ganymede, and Callisto, with the aim to better understand the origin and evolution of our Solar System and the emergence of habitable worlds around gas giants. The Particle Environment Package (PEP) on board JUICE is designed to measure neutrals and ions and electrons at thermal, suprathermal, and radiation belt energies (eV to MeV). In the vicinity of Callisto, PEP will characterize the plasma environment, the outer parts of Callisto's atmosphere and ionosphere and their interaction with Jupiter's dynamic magnetosphere. Roughly 20 Callisto flybys with closest approaches between 200 and 5,000 km altitude are planned over the course of the JUICE mission. In this article, we review the state of the art regarding Callisto's ambient environment and magnetospheric interaction with recent modeling efforts for Callisto's atmosphere and ionosphere. Based on this review, we identify science opportunities for the PEP observations to optimize scientific insight gained from the foreseen JUICE flybys. These considerations will inform both science operation planning of PEP and JUICE and they will guide future model development for Callisto's atmosphere, ionosphere, and their interaction with the plasma environment
Temporal Evolution of the Solar-Wind Electron Core Density at Solar Minimum by Correlating SWEA Measurements from STEREO A and B
The twin STEREO spacecraft provide a unique tool to study the temporal evolution of the solar-wind properties in the ecliptic since their longitudinal separation increases with time. We derive the characteristic temporal variations at âŒâ1 AU between two different plasma parcels ejected from the same solar source by excluding the spatial variations from our datasets. As part of the onboard IMPACT instrument suite, the SWEA electron experiment provides the solar-wind electron core density at two different heliospheric vantage points. We analyze these density datasets between March and August 2007 and find typical solar minimum conditions. After adjusting for the theoretical time lag between the two spacecraft, we compare the two density datasets. We find that their correlation decreases as the time difference increases between two ejections. The correlation coefficient is about 0.80 for a time lag of a half day and 0.65 for two days. These correlation coefficients from the electron core density are somewhat lower than the ones from the proton bulk velocity obtained in an earlier study, though they are still high enough to consider the solar wind as persistent after two days. These quantitative results reflect the variability of the solar-wind properties in space and time, and they might serve as input for solar-wind models
Heliospheric Neutral Atom Spectra Between 0.01 and 6 keV fom IBEX
Since 2008 December, the Interstellar Boundary Explorer (IBEX) has been making detailed observations of neutrals from the boundaries of the heliosphere using two neutral atom cameras with overlapping energy ranges. The unexpected, yet defining feature discovered by IBEX is a Ribbon that extends over the energy range from about 0.2 to 6 keV. This Ribbon is superposed on a more uniform, globally distributed heliospheric neutral population. With some important exceptions, the focus of early IBEX studies has been on neutral atoms with energies greater than approx. 0.5 keV. With nearly three years of science observations, enough low-energy neutral atom measurements have been accumulated to extend IBEX observations to energies less than approx. 0.5 keV. Using the energy overlap of the sensors to identify and remove backgrounds, energy spectra over the entire IBEX energy range are produced. However, contributions by interstellar neutrals to the energy spectrum below 0.2 keV may not be completely removed. Compared with spectra at higher energies, neutral atom spectra at lower energies do not vary much from location to location in the sky, including in the direction of the IBEX Ribbon. Neutral fluxes are used to show that low energy ions contribute approximately the same thermal pressure as higher energy ions in the heliosheath. However, contributions to the dynamic pressure are very high unless there is, for example, turbulence in the heliosheath with fluctuations of the order of 50-100 km/s
Open and Hidden Charm Production in 920 GeV Proton-Nucleus Collisions
The HERA-B collaboration has studied the production of charmonium and open
charm states in collisions of 920 GeV protons with wire targets of different
materials. The acceptance of the HERA-B spectrometer covers negative values of
xF up to xF=-0.3 and a broad range in transverse momentum from 0.0 to 4.8
GeV/c. The studies presented in this paper include J/psi differential
distributions and the suppression of J/psi production in nuclear media.
Furthermore, production cross sections and cross section ratios for open charm
mesons are discussed.Comment: 5 pages, 9 figures, to be published in the proceedings of the 6th
International Conference on Hyperons, Charm & Beauty Hadrons (BEACH04),
Chicago, IL, June 27 - July 3, 200
Diagnostics of corotating interaction regions with the kinetic properties of iron ions as determined with STEREO/PLASTIC
STEREO/PLASTIC determines three-dimensional distributions of solar wind iron ions with unprecedented time resolution. Typically 300 to 1000 counts are registered within each 5 min time interval. For the present study we use the information contained in these distributions to characterize CIRs (Corotating Interaction Regions) in two test cases. We perform a consistency test for both the derived physical parameters and for the analytical model of CIRs of Lee (2000). At 1 AU we find that apart from compositional changes the most indicative parameter for marking the time when a CIR passes a spacecraft is the angular deflection of the flow vector of particles. Changes in particle densities and the changes in magnitudes of speeds are apparently less reliable indicators of stream interfaces
Inclusive Production Cross Sections from 920 GeV Fixed Target Proton-Nucleus Collisions
Inclusive differential cross sections and
for the production of \kzeros, \lambdazero, and
\antilambda particles are measured at HERA in proton-induced reactions on C,
Al, Ti, and W targets. The incident beam energy is 920 GeV, corresponding to
GeV in the proton-nucleon system. The ratios of differential
cross sections \rklpa and \rllpa are measured to be and , respectively, for \xf . No significant dependence upon the
target material is observed. Within errors, the slopes of the transverse
momentum distributions also show no significant
dependence upon the target material. The dependence of the extrapolated total
cross sections on the atomic mass of the target material is
discussed, and the deduced cross sections per nucleon are
compared with results obtained at other energies.Comment: 17 pages, 7 figures, 5 table
Search for the Flavor-Changing Neutral Current Decay with the HERA-B Detector
We report on a search for the flavor-changing neutral current decay using events recorded with a dimuon trigger in
interactions of 920 GeV protons with nuclei by the HERA-B experiment. We find
no evidence for such decays and set a 90% confidence level upper limit on the
branching fraction .Comment: 17 pages, 4 figures (of which 1 double), paper to be submitted to
Physics Letters
- âŠ