41 research outputs found
Egg quality determinants in cod (Gadus morhua L.): egg performance and lipids in eggs from farmed and wild broodstock
Lipids and essential fatty acids, particularly the highly unsaturated fatty acids, 20:5n-3 (eicosapentaenoic acid; EPA), 22:6n-3 (docosahexaenoic acid; DHA) and 20:4n-6 (arachidonic acid, AA) have been shown to be crucial determinants of marine fish reproduction directly affecting fecundity, egg quality, hatching success, larval malformation and pigmentation. In Atlantic cod (Gadus morhua L.) culture, eggs from farmed broodstock can have much lower fertilisation and hatching rates than eggs from wild broodstock. The present study aimed to test the hypothesis that potential quality and performance differences between eggs from different cod broodstock would be reflected in differences in lipid and fatty acid composition. Thus eggs were obtained from three broodstock, farmed, wild/fed and wild/unfed, and lipid content, lipid class composition, fatty acid composition and pigment content were determined and related to performance parameters including fertilisation rate, symmetry of cell division and survival to hatching. Eggs from farmed broodstock showed significantly lower fertilisation rates, cell symmetry and survival to hatching rates than eggs from wild broodstock. There were no differences in total lipid content or the proportions of the major lipid classes between eggs from the different broodstock. However, eggs from farmed broodstock were characterised by having significantly lower levels of some quantitatively minor phospholipid classes, particularly phosphatidylinositol. There were no differences between eggs from farmed and wild broodstock in the proportions of saturated, monounsaturated and total polyunsaturated fatty acids. The DHA content was also similar. However, eggs from farmed broodstock had significantly lower levels of AA, and consequently significantly higher EPA/AA ratios than eggs from wild broodstock. Total pigment and astaxanthin levels were significantly higher in eggs from wild broodstock. Therefore, the levels of AA and phosphatidylinositol, the predominant AA-containing lipid class, and egg pigment content were positively related to egg quality or performance parameters such as fertilisation and hatching success rates, and cell symmetry
Highly unsaturated fatty acid synthesis in marine fish: Cloning, functional characterization, and nutritional regulation of fatty acyl delta6 desaturase of Atlantic cod (Gadus morhua L.)
Fish contain high levels of the n-3 highly unsaturated fatty acids (HUFA), eicosapentaenoic (EPA) and docosahexaenoic (DHA) acids that are crucial to the health of higher vertebrates. Biosynthesis of HUFA requires enzyme-mediated desaturation of fatty acids. Here we report cloning and functional characterisation of a ∆6 fatty acyl desaturase of Atlantic cod (Gadus morhua), and describe its tissue expression and nutritional regulation. PCR primers were designed based on the sequences of conserved motifs in available fish desaturases and used to isolate a cDNA fragment from liver of cod. The full-length cDNA was obtained by Rapid Amplification of cDNA Ends (RACE). The cDNA for the putative fatty acyl desaturase was shown to comprise 1980bp which included a 5’-UTR of 261bp and a 3’-UTR of 375bp. Sequencing revealed that the cDNA included an ORF of 1344 bp that specified a protein of 447 amino acids. The protein sequence included three histidine boxes, two transmembrane regions, and an N-terminal cytochrome b5 domain containing the haem-binding motif HPGG, all of which are characteristic of microsomal fatty acid desaturases. The cDNA displayed Δ6 desaturase activity in a heterologous yeast expression system. Quantitative real time PCR assay of gene expression in cod showed that the ∆6 desaturase gene, was highly expressed in brain, relatively highly expressed in liver, kidney, intestine, red muscle and gill, and expressed at much lower levels in white muscle, spleen and heart. In contrast, the abundance of a cod fatty acyl elongase transcript was high in brain and gill, with intermediate levels in kidney, spleen, intestine and heart, and relatively low expression in liver. The expression of the Δ6 desaturase gene and the PUFA elongase gene may be under a degree of nutritional regulation, with levels being marginally increased in livers and intestine of fish fed a vegetable oil blend by comparison with levels in fish fed fish oil. However, this was not reflected in increased Δ6 desaturase activity in hepatocytes or enterocytes, which showed very little highly unsaturated fatty acid biosynthesis activity irrespective of diet. The study described has demonstrated that Atlantic cod express a fatty acid desaturase gene with functional Δ6 activity in a yeast expression system. This is consistent with an established hypothesis that the poor ability of marine fish to synthesise HUFA is not due to lack of a Δ6 desaturase, but rather to deficiencies in other parts of the biosynthetic pathway. However, further studies are required to determine why the Δ6 desaturase appears to be barely functional in cod under the conditions tested
Proxy Measures of Fitness Suggest Coastal Fish Farms Can Act as Population Sources and Not Ecological Traps for Wild Gadoid Fish
Background: Ecological traps form when artificial structures are added to natural habitats and induce mismatches between
habitat preferences and fitness consequences. Their existence in terrestrial systems has been documented, yet little evidence suggests they occur in marine environments. Coastal fish farms are widespread artificial structures in coastal ecosystems and are highly attractive to wild fish. Methodology/Principal Findings: To investigate if coastal salmon farms act as ecological traps for wild Atlantic cod (Gadus morhua) and saithe (Pollachius virens), we compared proxy measures of fitness between farm-associated fish and control fish caught distant from farms in nine locations throughout coastal Norway, the largest coastal fish farming industry in the world. Farms modified wild fish diets in both quality and quantity, thereby providing farm-associated wild fish with a strong trophic subsidy. This translated to greater somatic (saithe: 1.06–1.12 times; cod: 1.06–1.11 times) and liver condition indices (saithe: 1.4–1.8 times; cod: 2.0–2.8 times) than control fish caught distant from farms. Parasite loads of farm-associated wild fish were modified from control fish, with increased external and decreased internal parasites, however the strong effect of the trophic subsidy overrode any effects of altered loads upon condition. Conclusions and Significance: Proxy measures of fitness provided no evidence that salmon farms function as ecological traps for wild fish. We suggest fish farms may act as population sources for wild fish, provided they are protected from fishing while resident at farms to allow their increased condition to manifest as greater reproductive output.Funding was provided by the Norwegian Research Council Havet og kysten program to the CoastACE project (no: 173384)
Plant Products Affect Growth and Digestive Efficiency of Cultured Florida Pompano (Trachinotus carolinus) Fed Compounded Diets
Costs of compounded diets containing fish meal as a primary protein source can be expected to rise as fish meal prices increase in response to static supply and growing demand. Alternatives to fish meal are needed to reduce production costs in many aquaculture enterprises. Some plant proteins are potential replacements for fish meal because of their amino acid composition, lower cost and wide availability. In this study, we measured utilization of soybean meal (SBM) and soy protein concentrate (SPC) by Florida pompano fed compounded diets, to determine the efficacy of these products as fish meal replacements. We also calculated apparent digestibility coefficients (ADCs) for canola meal (CM), corn gluten meal (CGM), and distillers dried grains with solubles (DDGS), following typical methods for digestibility trials. Juvenile Florida pompano were fed fish-meal-free diets containing graded levels of SBM and SPC, and weight gain was compared to a control diet that contained SBM, SPC, and fish meal. Fish fed diets that contained 25–30 percent SBM in combination with 43–39 percent SPC had weight gain equivalent to fish fed the control diet with fish meal, while weight gain of fish fed other soy combinations was significantly less than that of the control group. Apparent crude protein digestibility of CGM was significantly higher than that of DDGS but not significantly different from CM. Apparent energy digestibility of DDGS was significantly lower than CGM but significantly higher than CM. Findings suggested that composition of the reference diet used in a digestibility trial affects the values of calculated ADCs, in addition to the chemical and physical attributes of the test ingredient
Performance, feed utilization, and hepatic metabolic response of weaned juvenile Atlantic bluefin tuna (Thunnus thynnus L.): effects of dietary lipid level and source
The development of formulated diets and feeds is essential to increase production of farmed tuna species. There is limited knowledge of this topic, mainly on Pacific Bluefin tuna (Thunnus orientalis) in Japan, whereas no major attempts have been made with Atlantic Bluefin tuna (Thunnus thynnus; ABT). In the present study, two trials were performed using inert formulated diets as on-growing feeds for weaned ABT juvenile in order to establish adequate dietary levels of both lipid and omega-3 long-chain polyunsaturated fatty acids (LC-PUFA). In a first trial, ABT (initial weight = 2.9±0.9g) were fed for 10 days with either a commercial (Magokoro®, MGK) or two experimental feeds with two different lipid levels (15 or 20%) using krill oil (KO) as the single lipid source in order to estimate the suitable lipid content. Fish fed MGK displayed the highest growth, followed by 15KO, with no differences in fish survival. Thus, a lipid content of 15% was considered better than 20% for ABT juveniles. In the second trial, fish (initial weight = 3.3 ± 0.6g) were fed either MGK, 15KO or a feed containing 15% lipid with a combination (1:1, v/v) KO and rapeseed oil (RO) (15KORO). Fish fed 15KO and 15KORO showed the highest growth in terms of weight and fork length (including weight gain and SGR). Increasing dietary lipid level or adding RO to the feeds did not increase liver lipid content. The liver fatty acid profile largely reflected dietary intake confirming very limited LC-PUFA biosynthetic activity for this teleost species. In this respect, liver of fish fed 15KO and 20KO displayed the highest contents of docosahexaenoic acid (DHA). The hepatic expression of genes of lipid and fatty acid metabolism, transcription factors, and antioxidant enzymes was investigated with many of the genes showing regulation by both dietary lipid and LC-PUFA contents. The present study showed promising results that suggested ABT juveniles can be on grown on inert dry feeds that supported good fish growth and the accumulation of the health-promoting fatty acid DHA. Further studies are required in order to fully elucidate lipid and fatty acid requirements of this iconic species regarding dietary sources and production costs.En prensa1,52
Transient up- and down-regulation of expression of myosin light chain 2 and myostatin mRNA mark the changes from stratified hyperplasia to muscle fiber hypertrophy in larvae of gilthead sea bream (Sparus aurata L.)
Hyperplasia and hypertrophy are the two mechanisms by which muscle develops and grows. We study these two mechanisms, during the early development of white muscle in Sparus aurata, by means of histology and the expression of structural and regulatory genes. A clear stage of stratified hyperplasia was identified early in the development of gilthead sea bream but ceased by 35 dph when hypertrophy took over. Mosaic recruitment of new white fibers began as soon as 60 dph. The genes mlc2a and mlc2b were expressed at various levels during the main phases of hyperplasia and hypertrophy. The genes myog and mlc2a were significantly up-regulated during the intensive stratified formation of new fibers and their expression was significantly correlated. Expression of mstn1 and igf1 increased at 35 dph, appeared to regulate the hyperplasia-to-hypertrophy transition, and may have stimulated the expression of mlc2a, mlc2b and col1a1 at the onset of mosaic hyperplasia. The up-regulation of mstn1 at transitional phases in muscle development indicates a dual regulatory role of myostatin in fish larval muscle growth
A new MEMS microphone array for the wavenumber analysis of wall-pressure fluctuations: application to the modal investigation of a ducted low-Mach number stage
International audienc