105 research outputs found

    Dimerization-driven interaction of hepatitis C virus core protein with NS3 helicase

    Get PDF
    Hepatitis C virus (HCV) infects over 130 million people causing a worldwide epidemic of liver cirrhosis and hepatocellular-carcinoma. Because current HCV treatments are only partially effective, molecular mechanisms involved in HCV propagation are actively being pursued as possible drug targets. Here, we report on a new macromolecular interaction between the HCV capsid core protein and the helicase portion of HCV non-structural protein 3 (NS3h), confirmed by four different biochemical methods. The protease portion of NS3 is not required. Interaction between the two proteins could be disrupted by two types of specific inhibitors of core dimerization, the small molecule SL201 and core106, a C-terminally truncated core protein. Cross-linking experiments suggest that the physical interaction with NS3h is probably driven by core oligomerization. Moreover, SL201 blocks the production of infectious virus, but not the production of a subgenomic HCV replicon by hepatoma cells. Time-of-addition experiments confirm that SL201 has no effect on entry of the virus. These data underline the essential role of core as a key organizer of HCV particle assembly, confirm the importance of oligomerization, reveal the interaction with viral helicase and support a new molecular understanding of the formation of the viral particle at the level of the lipid droplets, before its migration to the site of release and budding

    PDRs4All VI: Probing the Photochemical Evolution of PAHs in the Orion Bar Using Machine Learning Techniques

    Full text link
    [Abridged] JWST observations of the Orion Bar have shown the incredible richness of PAH bands and their variation on small scales. We aim to probe the photochemical evolution of PAHs across the key zones of the photodissociation region (PDR) that is the Orion Bar using unsupervised machine learning. We use NIRSpec and MIRI IFU data from the JWST ERS Program PDRs4All. We lever bisecting k-means clustering to generate detailed spatial maps of the spectral variability in several wavelength regions. We discuss the variations in the cluster profiles and connect them to the local physical conditions. We interpret these variations with respect to the key zones: the HII region, the atomic PDR zone, and the three dissociation fronts. The PAH emission exhibits spectral variation that depends strongly on spatial position in the PDR. We find the 8.6um band to behave differently than all other bands which vary systematically with one another. We find uniform variation in the 3.4-3.6um bands and 3.4/3.3 intensity ratio. We attribute the carrier of the 3.4-3.6um bands to a single side group attached to very similarly sized PAHs. Cluster profiles reveal a transition between characteristic profiles classes of the 11.2um feature from the atomic to the molecular PDR zone. We find the carriers of each of the profile classes to be independent, and reason the latter to be PAH clusters existing solely deep in the molecular PDR. Clustering also reveals a connection between the 11.2 and 6.2um bands; and that clusters generated from variation in the 10.9-11.63um region can be used to recover those in the 5.95-6.6um region. Clustering is a powerful tool for characterizing PAH variability on both spatial and spectral scales. For individual bands as well as global spectral behaviours, we find UV-processing to be the most important driver of the evolution of PAHs and their spectral signatures in the Orion Bar.Comment: 28 pages, 20 figures, submitted to A&

    Highlights from the Pierre Auger Observatory

    Full text link
    The Pierre Auger Observatory is the world's largest cosmic ray observatory. Our current exposure reaches nearly 40,000 km2^2 str and provides us with an unprecedented quality data set. The performance and stability of the detectors and their enhancements are described. Data analyses have led to a number of major breakthroughs. Among these we discuss the energy spectrum and the searches for large-scale anisotropies. We present analyses of our Xmax_{max} data and show how it can be interpreted in terms of mass composition. We also describe some new analyses that extract mass sensitive parameters from the 100% duty cycle SD data. A coherent interpretation of all these recent results opens new directions. The consequences regarding the cosmic ray composition and the properties of UHECR sources are briefly discussed.Comment: 9 pages, 12 figures, talk given at the 33rd International Cosmic Ray Conference, Rio de Janeiro 201

    Anisotropy and chemical composition of ultra-high energy cosmic rays using arrival directions measured by the Pierre Auger Observatory

    Get PDF
    The Pierre Auger Collaboration has reported evidence for anisotropy in the distribution of arrival directions of the cosmic rays with energies E>Eth=5.5×1019E>E_{th}=5.5\times 10^{19} eV. These show a correlation with the distribution of nearby extragalactic objects, including an apparent excess around the direction of Centaurus A. If the particles responsible for these excesses at E>EthE>E_{th} are heavy nuclei with charge ZZ, the proton component of the sources should lead to excesses in the same regions at energies E/ZE/Z. We here report the lack of anisotropies in these directions at energies above Eth/ZE_{th}/Z (for illustrative values of Z=6, 13, 26Z=6,\ 13,\ 26). If the anisotropies above EthE_{th} are due to nuclei with charge ZZ, and under reasonable assumptions about the acceleration process, these observations imply stringent constraints on the allowed proton fraction at the lower energies

    Isosteviol Has Beneficial Effects on Palmitate-Induced α-Cell Dysfunction and Gene Expression

    Get PDF
    BACKGROUND: Long-term exposure to high levels of fatty acids impairs insulin secretion and exaggerates glucagon secretion. The aim of this study was to explore if the antihyperglycemic agent, Isosteviol (ISV), is able to counteract palmitate-induced α-cell dysfunction and to influence α-cell gene expression. METHODOLOGY/PRINCIPAL FINDINGS: Long-term incubation studies with clonal α-TC1-6 cells were performed in the presence of 0.5 mM palmitate with or without ISV. We investigated effects on glucagon secretion, glucagon content, cellular triglyceride (TG) content, cell proliferation, and expression of genes involved in controlling glucagon synthesis, fatty acid metabolism, and insulin signal transduction. Furthermore, we studied effects of ISV on palmitate-induced glucagon secretion from isolated mouse islets. Culturing α-cells for 72-h with 0.5 mM palmitate in the presence of 18 mM glucose resulted in a 56% (p<0.01) increase in glucagon secretion. Concomitantly, the TG content of α-cells increased by 78% (p<0.01) and cell proliferation decreased by 19% (p<0.05). At 18 mM glucose, ISV (10(-8) and 10(-6) M) reduced palmitate-stimulated glucagon release by 27% (p<0.05) and 27% (p<0.05), respectively. ISV (10(-6) M) also counteracted the palmitate-induced hypersecretion of glucagon in mouse islets. ISV (10(-6) M) reduced α-TC1-6 cell proliferation rate by 25% (p<0.05), but ISV (10(-8) and 10(-6) M) had no effect on TG content in the presence of palmitate. Palmitate (0.5 mM) increased Pcsk2 (p<0.001), Irs2 (p<0.001), Fasn (p<0.001), Srebf2 (p<0.001), Acaca (p<0.01), Pax6 (p<0.05) and Gcg mRNA expression (p<0.05). ISV significantly (p<0.05) up-regulated Insr, Irs1, Irs2, Pik3r1 and Akt1 gene expression in the presence of palmitate. CONCLUSIONS/SIGNIFICANCE: ISV counteracts α-cell hypersecretion and apparently contributes to changes in expression of key genes resulting from long-term exposure to palmitate. ISV apparently acts as a glucagonostatic drug with potential as a new anti-diabetic drug for the treatment of type 2 diabetes

    A Concerted Action of Hepatitis C Virus P7 and Nonstructural Protein 2 Regulates Core Localization at the Endoplasmic Reticulum and Virus Assembly

    Get PDF
    Hepatitis C virus (HCV) assembly remains a poorly understood process. Lipid droplets (LDs) are thought to act as platforms for the assembly of viral components. The JFH1 HCV strain replicates and assembles in association with LD-associated membranes, around which viral core protein is predominantly detected. In contrast, despite its intrinsic capacity to localize to LDs when expressed individually, we found that the core protein of the high-titer Jc1 recombinant virus was hardly detected on LDs of cell culture-grown HCV (HCVcc)-infected cells, but was mainly localized at endoplasmic reticulum (ER) membranes where it colocalized with the HCV envelope glycoproteins. Furthermore, high-titer cell culture-adapted JFH1 virus, obtained after long-term culture in Huh7.5 cells, exhibited an ER-localized core in contrast to non-adapted JFH1 virus, strengthening the hypothesis that ER localization of core is required for efficient HCV assembly. Our results further indicate that p7 and NS2 are HCV strain-specific factors that govern the recruitment of core protein from LDs to ER assembly sites. Indeed, using expression constructs and HCVcc recombinant genomes, we found that p7 is sufficient to induce core localization at the ER, independently of its ion-channel activity. Importantly, the combined expression of JFH1 or Jc1 p7 and NS2 induced the same differential core subcellular localization detected in JFH1- vs. Jc1-infected cells. Finally, results obtained by expressing p7-NS2 chimeras between either virus type indicated that compatibilities between the p7 and the first NS2 trans-membrane domains is required to induce core-ER localization and assembly of extra- and intra-cellular infectious viral particles. In conclusion, we identified p7 and NS2 as key determinants governing the subcellular localization of HCV core to LDs vs. ER and required for initiation of the early steps of virus assembly

    Molecular Determinants and Dynamics of Hepatitis C Virus Secretion

    Get PDF
    The current model of hepatitis C virus (HCV) production involves the assembly of virions on or near the surface of lipid droplets, envelopment at the ER in association with components of VLDL synthesis, and egress via the secretory pathway. However, the cellular requirements for and a mechanistic understanding of HCV secretion are incomplete at best. We combined an RNA interference (RNAi) analysis of host factors for infectious HCV secretion with the development of live cell imaging of HCV core trafficking to gain a detailed understanding of HCV egress. RNAi studies identified multiple components of the secretory pathway, including ER to Golgi trafficking, lipid and protein kinases that regulate budding from the trans-Golgi network (TGN), VAMP1 vesicles and adaptor proteins, and the recycling endosome. Our results support a model wherein HCV is infectious upon envelopment at the ER and exits the cell via the secretory pathway. We next constructed infectious HCV with a tetracysteine (TC) tag insertion in core (TC-core) to monitor the dynamics of HCV core trafficking in association with its cellular cofactors. In order to isolate core protein movements associated with infectious HCV secretion, only trafficking events that required the essential HCV assembly factor NS2 were quantified. TC-core traffics to the cell periphery along microtubules and this movement can be inhibited by nocodazole. Sub-populations of TC-core localize to the Golgi and co-traffic with components of the recycling endosome. Silencing of the recycling endosome component Rab11a results in the accumulation of HCV core at the Golgi. The majority of dynamic core traffics in association with apolipoprotein E (ApoE) and VAMP1 vesicles. This study identifies many new host cofactors of HCV egress, while presenting dynamic studies of HCV core trafficking in infected cells
    corecore