49 research outputs found

    Bottom up ethics - neuroenhancement in education and employment

    Get PDF
    Neuroenhancement involves the use of neurotechnologies to improve cognitive, affective or behavioural functioning, where these are not judged to be clinically impaired. Questions about enhancement have become one of the key topics of neuroethics over the past decade. The current study draws on in-depth public engagement activities in ten European countries giving a bottom-up perspective on the ethics and desirability of enhancement. This informed the design of an online contrastive vignette experiment that was administered to representative samples of 1000 respondents in the ten countries and the United States. The experiment investigated how the gender of the protagonist, his or her level of performance, the efficacy of the enhancer and the mode of enhancement affected support for neuroenhancement in both educational and employment contexts. Of these, higher efficacy and lower performance were found to increase willingness to support enhancement. A series of commonly articulated claims about the individual and societal dimensions of neuroenhancement were derived from the public engagement activities. Underlying these claims, multivariate analysis identified two social values. The Societal/Protective highlights counter normative consequences and opposes the use enhancers. The Individual/Proactionary highlights opportunities and supports use. For most respondents these values are not mutually exclusive. This suggests that for many neuroenhancement is viewed simultaneously as a source of both promise and concern

    Platelet GPIIb supports initial pulmonary retention but inhibits subsequent proliferation of melanoma cells during hematogenic metastasis

    Get PDF
    Platelets modulate the process of cancer metastasis. However, current knowledge on the direct interaction of platelets and tumor cells is mostly based on findings obtained in vitro. We addressed the role of the platelet fibrinogen receptor glycoprotein IIb (integrin alpha IIb) for experimental melanoma metastasis in vivo. Highly metastatic B16-D5 melanoma cells were injected intravenously into GPIIb-deficient (GPIIb(-/-)) or wildtype (WT) mice. Acute accumulation of tumor cells in the pulmonary vasculature was assessed in real-time by confocal videofluorescence microscopy. Arrest of tumor cells was dramatically reduced in GPIIb(-/-) mice as compared to WT. Importantly, we found that mainly multicellular aggregates accumulated in the pulmonary circulation of WT, instead B16-D5 aggregates were significantly smaller in GPIIb(-/-) mice. While pulmonary arrest of melanoma was clearly dependent on GPIIb in this early phase of metastasis, we also addressed tumor progression 10 days after injection. Inversely, and unexpectedly, we found that melanoma metastasis was now increased in GPIIb(-/-) mice. In contrast, GPIIb did not regulate local melanoma proliferation in a subcutaneous tumor model. Our data suggest that the platelet fibrinogen receptor has a differential role in the modulation of hematogenic melanoma metastasis. While platelets clearly support early steps in pulmonary metastasis via GPIIb-dependent formation of platelet-tumor-aggregates, at a later stage its absence is associated with an accelerated development of melanoma metastases

    Modeling RBE-weighted dose variations in irregularly moving abdominal targets treated with carbon ion beams

    No full text
    Purpose: To model four-dimensional (4D) relative biological effectiveness (RBE)-weighted dose variations in abdominal lesions treated with scanned carbon ion beam in case of irregular breathing motion. Methods: The proposed method, referred to as bioWED method, combines the simulation of tumor motion in a patient- and beam-specific water equivalent depth (WED)-space with RBE modeling, aiming at the estimation of RBE-weighted dose changes due to respiratory motion. The method was validated on a phantom, simulating gated and free breathing dose delivery, and on a patient case, for which free breathing irradiation was assumed and both amplitude and baseline breathing irregularities were simulated through a respiratory motion model. We quantified (a) the effect of motion on the equivalent uniform dose (EUD) and the RBE-weighted dose–volume histograms (DVH), by comparing the planned dose distribution with “ground truth” 4D RBE-weighted doses computed using 4D computed tomography data, and (ii) the estimation error, by comparing the doses estimated with the bioWED method to “ground truth” 4D RBE-weighted doses. Results: In the phantom validation, the estimation error on the EUD was limited with respect to the motion effect and the median estimation error on relevant RBE-weighted DVH metrics remained within 5%. In the patient study, the estimation error as computed on the EUD was smaller than the corresponding motion effect, exhibiting the largest values in the baseline irregularity simulation. However, the median estimation error over all simulations was below 3.2% considering relevant DVH metrics. Conclusions: In the evaluated cases, the bioWED method showed proper accuracy when compared to deformable image registration-based 4D dose calculation. Therefore, it can be seen as a tool to test treatment plan robustness against irregular breathing motion, although its accuracy decreases as a function of increasing soft tissue deformation and should be evaluated on a larger patient dataset

    Multi-criterial patient positioning based on dose recalculation on scatter-corrected CBCT images.

    No full text
    Background and purpose: Our aim was to evaluate the feasibility and potential advantages of dose guided patient positioning based on dose recalculation on scatter corrected cone beam computed tomography (CBCT) image data. Material and methods: A scatter correction approach has been employed to enable dose calculations on CBCT images. A recently proposed tool for interactive multicriterial dose-guided patient positioning which uses interpolation between pre-calculated sample doses has been utilized. The workflow was retrospectively evaluated for two head and neck patients with a total of 39 CBCTs. Dose-volume histogram (DVH) parameters were compared to rigid image registration based isocenter corrections (clinical scenario). Results: The accuracy of the dose interpolation was found sufficient, facilitating the implementation of dose guided patient positioning. Compared to the clinical scenario, the mean dose to the parotid glands could be improved for 2 out of 5 fractions for the first patient while other parameters were preserved. For the second patient, the mean coverage over all fractions of the high dose PTV could be improved by 4%. For this patient, coverage improvements had to be traded against organ at risk (OAR) doses within their' clinical tolerance limits. Conclusions: Dose guided patient positioning using in-room CBCT data is feasible and offers increased control over target coverage and doses to OARs

    Review of experimental data and modeling of the viscosities of fully liquid slags in the Al2O3-CaO-'FeO'-SiO2 system

    No full text
    A general model based on the Urbain formalism has been developed, which enables the viscosities of liquid slags to be predicted for all compositions in the Al2O3-CaO-'FeO'-SiO2 system in equilibrium with metallic iron. Available experimental viscosity data have been analyzed and critically reviewed. The Urbain formalism has been modified to include compositional dependent model parameters. Experimental data in unaries, binaries, ternaries, and the quaternary system have been described by the model over the whole compositional and temperature ranges using one set of model parameters. This viscosity model can now be applied to various industrial slag systems
    corecore