686 research outputs found

    Pseudo-Dipole Signal Removal from WMAP Data

    Full text link
    It is discovered in our previous work that different observational systematics, e.g., errors of antenna pointing directions, asynchronous between the attitude and science data, can generate pseudo-dipole signal in full-sky maps of the cosmic microwave background (CMB) anisotropy published by The Wilkinson Microwave Anisotropy Probe (WMAP) team. Now the antenna sidelobe response to the Doppler signal is found to be able to produce similar effect as well. In this work, independent to the sources, we uniformly model the pseudo-dipole signal and remove it from published WMAP7 CMB maps by model fitting. The result demonstrates that most of the released WMAP CMB quadrupole is artificial.Comment: V3: using WMAP7 dat

    Constraining the Cosmic Background Light with four BL Lac TeV spectra

    Full text link
    The intrinsic BL Lac spectra above few hundreds GeV can be very different from the observed ones due to the absorption effects by the diffuse Extragalactic Background Light (EBL), at present poorly known. With the recent results, there are now 4 sources with good spectral information: Mkn 421 (z=0.031), Mkn 501 (z=0.034), 1ES 1426+428 (z=0.129) and 1ES 1959+650 (z=0.047). Making simple assumptions on the shape of the intrinsic spectra (according to the present blazar knowledge), we have considered the effects of different EBL spectral energy distributions (SED) for the first time on all 4 objects together, deriving constraints for the EBL fluxes. These resulted significantly lower than many direct estimates.Comment: 4 pages, 8 figures; to appear in the proceedings of the 2nd Veritas Symposium: "TeV Astrophysics of extragalactic sources". April 2003, Chicag

    Extrapolation of Galactic Dust Emission at 100 Microns to CMBR Frequencies Using FIRAS

    Full text link
    We present predicted full-sky maps of submillimeter and microwave emission from the diffuse interstellar dust in the Galaxy. These maps are extrapolated from the 100 micron emission and 100/240 micron flux ratio maps that Schlegel, Finkbeiner, & Davis (1998; SFD98) generated from IRAS and COBE/DIRBE data. Results are presented for a number of physically plausible emissivity models. We find that no power law emissivity function fits the FIRAS data from 200 - 2100 GHz. In this paper we provide a formalism for a multi-component model for the dust emission. A two-component model with a mixture of silicate and carbon-dominated grains (motivated by Pollack et al., 1994}) provides a fit to an accuracy of about 15% to all the FIRAS data over the entire high-latitude sky. Small systematic differences are found between the atomic and molecular phases of the ISM. Our predictions for the thermal (vibrational) emission from Galactic dust at \nu < 3000 GHz are available for general use. These full-sky predictions can be made at the DIRBE resolution of 40' or at the higher resolution of 6.1 arcmin from the SFD98 DIRBE-corrected IRAS maps.Comment: 48 pages, AAS LaTeX, 6 figures, ApJ (accepted). Data described in the text, as well as 4 additional figures, are available at http://astro.berkeley.edu/dus

    Verification and Control of Partially Observable Probabilistic Real-Time Systems

    Full text link
    We propose automated techniques for the verification and control of probabilistic real-time systems that are only partially observable. To formally model such systems, we define an extension of probabilistic timed automata in which local states are partially visible to an observer or controller. We give a probabilistic temporal logic that can express a range of quantitative properties of these models, relating to the probability of an event's occurrence or the expected value of a reward measure. We then propose techniques to either verify that such a property holds or to synthesise a controller for the model which makes it true. Our approach is based on an integer discretisation of the model's dense-time behaviour and a grid-based abstraction of the uncountable belief space induced by partial observability. The latter is necessarily approximate since the underlying problem is undecidable, however we show how both lower and upper bounds on numerical results can be generated. We illustrate the effectiveness of the approach by implementing it in the PRISM model checker and applying it to several case studies, from the domains of computer security and task scheduling

    Minimal Synthesis of String To String Functions From Examples

    Full text link
    We study the problem of synthesizing string to string transformations from a set of input/output examples. The transformations we consider are expressed using deterministic finite automata (DFA) that read pairs of letters, one letter from the input and one from the output. The DFA corresponding to these transformations have additional constraints, ensuring that each input string is mapped to exactly one output string. We suggest that, given a set of input/output examples, the smallest DFA consistent with the examples is a good candidate for the transformation the user was expecting. We therefore study the problem of, given a set of examples, finding a minimal DFA consistent with the examples and satisfying the functionality and totality constraints mentioned above. We prove that, in general, this problem (the corresponding decision problem) is NP-complete. This is unlike the standard DFA minimization problem which can be solved in polynomial time. We provide several NP-hardness proofs that show the hardness of multiple (independent) variants of the problem. Finally, we propose an algorithm for finding the minimal DFA consistent with input/output examples, that uses a reduction to SMT solvers. We implemented the algorithm, and used it to evaluate the likelihood that the minimal DFA indeed corresponds to the DFA expected by the user.Comment: SYNT 201

    Determining Foreground Contamination in CMB Observations: Diffuse Galactic Emission in the MAXIMA-I Field

    Full text link
    Observations of the CMB can be contaminated by diffuse foreground emission from sources such as Galactic dust and synchrotron radiation. In these cases, the morphology of the contaminating source is known from observations at different frequencies, but not its amplitude at the frequency of interest for the CMB. We develop a technique for accounting for the effects of such emission in this case, and for simultaneously estimating the foreground amplitude in the CMB observations. We apply the technique to CMB data from the MAXIMA-1 experiment, using maps of Galactic dust emission from combinations of IRAS and DIRBE observations, as well as compilations of Galactic synchrotron emission observations. The spectrum of the dust emission over the 150--450 GHz observed by MAXIMA is consistent with preferred models but the effect on CMB power spectrum observations is negligible.Comment: 19 pages, 8 figures, accepted for publication in the Astrophysical Journal. Monor changes to match the published versio

    Non-Abelian Dark Sectors and Their Collider Signatures

    Get PDF
    Motivated by the recent proliferation of observed astrophysical anomalies, Arkani-Hamed et al. have proposed a model in which dark matter is charged under a non-abelian "dark" gauge symmetry that is broken at ~ 1 GeV. In this paper, we present a survey of concrete models realizing such a scenario, followed by a largely model-independent study of collider phenomenology relevant to the Tevatron and the LHC. We address some model building issues that are easily surmounted to accommodate the astrophysics. While SUSY is not necessary, we argue that it is theoretically well-motivated because the GeV scale is automatically generated. Specifically, we propose a novel mechanism by which mixed D-terms in the dark sector induce either SUSY breaking or a super-Higgs mechanism precisely at a GeV. Furthermore, we elaborate on the original proposal of Arkani-Hamed et al. in which the dark matter acts as a messenger of gauge mediation to the dark sector. In our collider analysis we present cross-sections for dominant production channels and lifetime estimates for primary decay modes. We find that dark gauge bosons can be produced at the Tevatron and the LHC, either through a process analogous to prompt photon production or through a rare Z decay channel. Dark gauge bosons will decay back to the SM via "lepton jets" which typically contain >2 and as many as 8 leptons, significantly improving their discovery potential. Since SUSY decays from the MSSM will eventually cascade down to these lepton jets, the discovery potential for direct electroweak-ino production may also be improved. Exploiting the unique kinematics, we find that it is possible to reconstruct the mass of the MSSM LSP. We also present decay channels with displaced vertices and multiple leptons with partially correlated impact parameters.Comment: 44 pages, 25 figures, version published in JHE

    Extracting cosmic microwave background polarisation from satellite astrophysical maps

    Get PDF
    We present the application of the Fast Independent Component Analysis ({\ica}) technique for blind component separation to polarized astrophysical emission. We study how the Cosmic Microwave Background (CMB) polarized signal, consisting of EE and BB modes, can be extracted from maps affected by substantial contamination from diffuse Galactic foreground emission and instrumental noise. {We implement Monte Carlo chains varying the CMB and noise realizations in order to asses the average capabilities of the algorithm and their variance.} We perform the analysis of all sky maps simulated according to the {\sc Planck} satellite capabilities, modelling the sky signal as a superposition of the CMB and of the existing simulated polarization templates of Galactic synchrotron. Our results indicate that the angular power spectrum of CMB EE-mode can be recovered on all scales up to 1000\ell\simeq 1000, corresponding to the fourth acoustic oscillation, while the BB-mode power spectrum can be detected, up to its turnover at 100\ell\simeq 100, if the ratio of tensor to scalar contributions to the temperature quadrupole exceeds 30%. The power spectrum of the cross correlation between total intensity and polarization, TETE, can be recovered up to 1200\ell\simeq 1200, corresponding to the seventh TETE acoustic oscillation.Comment: 20 pages, MNRAS in pres

    Submillimetre point sources from the Archeops experiment: Very Cold Clumps in the Galactic Plane

    Full text link
    Archeops is a balloon-borne experiment, mainly designed to measure the Cosmic Microwave Background (CMB) temperature anisotropies at high angular resolution (~ 12 arcminutes). By-products of the mission are shallow sensitivity maps over a large fraction of the sky (about 30 %) in the millimetre and submillimetre range at 143, 217, 353 and 545 GHz. From these maps, we produce a catalog of bright submillimetre point sources. We present in this paper the processing and analysis of the Archeops point sources. Redundancy across detectors is the key factor allowing to sort out glitches from genuine point sources in the 20 independent maps. We look at the properties of the most reliable point sources, totalling 304. Fluxes range from 1 to 10,000 Jy (at the frequencies covering 143 to 545 GHz). All sources are either planets (2) or of galactic origin. Longitude range is from 75 to 198 degrees. Some of the sources are associated with well-known Lynds Nebulae and HII compact regions in the galactic plane. A large fraction of the sources have an IRAS counterpart. Except for Jupiter, Saturn, the Crab and Cas A, all sources show a dust-emission-like modified blackbody emission spectrum. Temperatures cover a range from 7 to 27 K. For the coldest sources (T<10 K), a steep nu^beta emissivity law is found with a surprising beta ~ 3 to 4. An inverse relationship between T and beta is observed. The number density of sources at 353 GHz with flux brighter than 100 Jy is of the order of 1 per degree of Galactic longitude. These sources will provide a strong check for the calibration of the Planck HFI focal plane geometry as a complement to planets. These very cold sources observed by Archeops should be prime targets for mapping observations by the Akari and Herschel space missions and ground--based observatories.Comment: Version matching the published article (English improved). Published in Astron. Astrophys, 21 pages, 13 figures, 4 tables Full article (with complete tables) can be retrieved at http://www.archeops.org/Archeops_Publicatio
    corecore