1,101 research outputs found

    Calibration of the Mass-Temperature Relation for Clusters of Galaxies Using Weak Gravitational Lensing

    Full text link
    The main uncertainty in current determinations of the power spectrum normalization, sigma_8, from abundances of X-ray luminous galaxy clusters arises from the calibration of the mass-temperature relation. We use our weak lensing mass determinations of 30 clusters from the hitherto largest sample of clusters with lensing masses, combined with X-ray temperature data from the literature, to calibrate the normalization of this relation at a temperature of 8 keV, M_{500c,8 keV}=(8.7 +/- 1.6) h^{-1} 10^{14} M_sun. This normalization is consistent with previous lensing-based results based on smaller cluster samples, and with some predictions from numerical simulations, but higher than most normalizations based on X-ray derived cluster masses. Assuming the theoretically expected slope alpha=3/2 of the mass-temperature relation, we derive sigma_8 = 0.88 +/-0.09 for a spatially-flat LambdaCDM universe with Omega_m = 0.3. The main systematic errors on the lensing masses result from extrapolating the cluster masses beyond the field-of-view used for the gravitational lensing measurements, and from the separation of cluster/background galaxies, contributing each with a scatter of 20%. Taking this into account, there is still significant intrinsic scatter in the mass-temperature relation indicating that this relation may not be very tight, at least at the high mass end. Furthermore, we find that dynamically relaxed clusters are 75 +/-40% hotter than non-relaxed clusters.Comment: 8 pages, 4 figures, revised version submitted to Ap

    Spatially Resolved Outflows in a Seyfert Galaxy at z = 2.39

    Full text link
    We present the first spatially resolved analysis of rest-frame optical and UV imaging and spectroscopy for a lensed galaxy at z = 2.39 hosting a Seyfert active galactic nucleus (AGN). Proximity to a natural guide star has enabled high signal-to-noise VLT SINFONI + adaptive optics observations of rest-frame optical diagnostic emission lines, which exhibit an underlying broad component with FWHM ~ 700 km/s in both the Balmer and forbidden lines. Measured line ratios place the outflow robustly in the region of the ionization diagnostic diagrams associated with AGN. This unique opportunity - combining gravitational lensing, AO guiding, redshift, and AGN activity - allows for a magnified view of two main tracers of the physical conditions and structure of the interstellar medium in a star-forming galaxy hosting a weak AGN at cosmic noon. By analyzing the spatial extent and morphology of the Ly-alpha and dust-corrected H-alpha emission, disentangling the effects of star formation and AGN ionization on each tracer, and comparing the AGN induced mass outflow rate to the host star formation rate, we find that the AGN does not significantly impact the star formation within its host galaxy.Comment: 16 pages, 5 figures, accepted for publication in Ap

    Prospects for high-z cluster detections with Planck, based on a follow-up of 28 candidates using MegaCam@CFHT

    Get PDF
    The Planck catalogue of SZ sources limits itself to a significance threshold of 4.5 to ensure a low contamination rate by false cluster candidates. This means that only the most massive clusters at redshift z>0.5, and in particular z>0.7, are expected to enter into the catalogue, with a large number of systems in that redshift regime being expected around and just below that threshold. In this paper, we follow-up a sample of SZ sources from the Planck SZ catalogues from 2013 and 2015. In the latter maps, we consider detections around and at lower significance than the threshold adopted by the Planck Collaboration. To keep the contamination rate low, our 28 candidates are chosen to have significant WISE detections, in combination with non-detections in SDSS/DSS, which effectively selects galaxy cluster candidates at redshifts z0.5z\gtrsim0.5. By taking r- and z-band imaging with MegaCam@CFHT, we bridge the 4000A rest-frame break over a significant redshift range, thus allowing accurate redshift estimates of red-sequence cluster galaxies up to z~0.8. After discussing the possibility that an overdensity of galaxies coincides -by chance- with a Planck SZ detection, we confirm that 16 of the candidates have likely optical counterparts to their SZ signals, 13 (6) of which have an estimated redshift z>0.5 (z>0.7). The richnesses of these systems are generally lower than expected given the halo masses estimated from the Planck maps. However, when we follow a simplistic model to correct for Eddington bias in the SZ halo mass proxy, the richnesses are consistent with a reference mass-richness relation established for clusters detected at higher significance. This illustrates the benefit of an optical follow-up, not only to obtain redshift estimates, but also to provide an independent mass proxy that is not based on the same data the clusters are detected with, and thus not subject to Eddington bias.Comment: 13 pages, 7 figures. Accepted for publication in A&

    Annihilation of NMSSM neutralinos in the Sun and neutrino telescope limits

    Full text link
    We investigate neutralino dark matter in the framework of NMSSM performing a scan over its parameter space and calculating neutralino capture and annihilation rates in the Sun. We discuss the prospects of searches for neutralino dark matter in neutrino experiments depending on neutralino content and its main annihilation channel. We recalculate the upper limits on neutralino-proton elastic cross sections directly from neutrino telescopes upper bounds on annihilation rates in the Sun. This procedure has advantages as compared with corresponding recalcalations from the limits on muon flux, namely, it is independent on details of the experiment and the recalculation coefficients are universal for any kind of WIMP dark matter models. We derive 90% c.l. upper limits on neutralino-proton cross sections from the results of the Baksan Underground Scintillator Telescope.Comment: 28 pages, 16 figures, accepted for publication in JCAP, references adde

    Weak Gravitational Lensing by a Sample of X-Ray Luminous Clusters of Galaxies -- II. Comparison with Virial Masses

    Full text link
    Dynamic velocity dispersion and mass estimates are given for a sample of five X-ray luminous rich clusters of galaxies at intermediate redshifts (z~0.3) drawn from a sample of 39 clusters for which we have obtained gravitational lens mass estimates. The velocity dispersions are determined from between 9 and 20 redshifts measured with the LDSS spectrograph of the William Herschel Telescope, and virial radii are determined from imaging using the UH8K mosaic CCD camera on the University of Hawaii 2.24m telescope. Including clusters with velocity dispersions taken from the literature, we have velocity dispersion estimates for 12 clusters in our gravitational lensing sample. For this sample we compare the dynamical velocity dispersion estimates with our estimates of the velocity dispersions made from gravitational lensing by fitting a singular isothermal sphere profile to the observed tangential weak lensing distortion as a function of radius. In all but two clusters, we find a good agreement between the velocity dispersion estimates based on spectroscopy and on weak lensing.Comment: 9 pages, 4 figures, accepted for publication in ApJ. Version in emulateapj format with only minor change

    A weak lensing analysis of the PLCK G100.2-30.4 cluster

    Get PDF
    We present a mass estimate of the Planck-discovered cluster PLCK G100.2-30.4, derived from a weak lensing analysis of deep SUBARU griz images. We perform a careful selection of the background galaxies using the multi-band imaging data, and undertake the weak lensing analysis on the deep (1hr) r-band image. The shape measurement is based on the KSB algorithm; we adopt the PSFex software to model the Point Spread Function (PSF) across the field and correct for this in the shape measurement. The weak lensing analysis is validated through extensive image simulations. We compare the resulting weak lensing mass profile and total mass estimate to those obtained from our re-analysis of XMM-Newton observations, derived under the hypothesis of hydrostatic equilibrium. The total integrated mass profiles are in remarkably good agreement, agreeing within 1σ\sigma across their common radial range. A mass M5007×1014MM_{500} \sim 7 \times 10^{14} M_\odot is derived for the cluster from our weak lensing analysis. Comparing this value to that obtained from our reanalysis of XMM-Newton data, we obtain a bias factor of (1-b) = 0.8 ±\pm 0.1. This is compatible within 1σ\sigma with the value of (1-b) obtained by Planck Collaboration XXIV from their calibration of the bias factor using newly-available weak lensing reconstructed masses.Comment: 11 pages, 12 figures, accepted for publication on Astronomy & Astrophysics; updates in affiliation

    Chandra and XMM-Newton observations of the merging cluster of galaxies PLCK G036.7+14.9

    Full text link
    We present Chandra and XMM-Newton observations of PLCK G036.7+14.9 from the Chandra-Planck Legacy Program. The high resolution X-ray observations reveal two close subclusters, G036N and G036S, which were not resolved by previous ROSAT, optical, or recent Planck observations. We perform detailed imaging and spectral analyses and use a simplified model to study the kinematics of this system. The basic picture is that PLCK G036.7+14.9 is undergoing a major merger (mass ratio close to unity) between the two massive subclusters, with the merger largely along the line-of-sight and probably at an early stage. G036N hosts a small, moderate cool-core, while G036S has at most a very weak cool-core in the central 40 kpc region. The difference in core cooling times is unlikely to be caused by the ongoing merger disrupting a pre-existing cool-core in G036S. G036N also hosts an unresolved radio source in the center, which may be heating the gas if the radio source is extended. The Planck derived mass is higher than the X-ray measured mass of either subcluster, but is lower than the X-ray measured mass of the whole cluster, due to the fact that Planck does not resolve PLCK G036.7+14.9 into subclusters and interprets it as a single cluster. This mass discrepancy could induce significant bias to the mass function if such previously unresolved systems are common in the Planck cluster sample. High resolution X-ray observations are necessary to identify the fraction of such systems and correct such a bias for the purpose of precision cosmological studies.Comment: 23 pages, 8 figures (low resolution) with additional 12 figures in the Appendix, accepted for publication in Ap

    Weak lensing mass reconstructions of the ESO Distant Cluster Survey

    Full text link
    We present weak lensing mass reconstructions for the 20 high-redshift clusters i n the ESO Distant Cluster Survey. The weak lensing analysis was performed on deep, 3-color optical images taken with VLT/FORS2, using a composite galaxy catalog with separate shape estimators measured in each passband. We find that the EDisCS sample is composed primarily of clusters that are less massive than t hose in current X-ray selected samples at similar redshifts, but that all of the fields are likely to contain massive clusters rather than superpositions of low mass groups. We find that 7 of the 20 fields have additional massive structures which are not associated with the clusters and which can affect the weak lensing mass determination. We compare the mass measurements of the remaining 13 clusters with luminosity measurements from cluster galaxies selected using photometric redshifts and find evidence of a dependence of the cluster mass-to-light ratio with redshift. Finally we determine the noise level in the shear measurements for the fields as a function of exposure time and seeing and demonstrate that future ground-based surveys which plan to perform deep optical imaging for use in weak lensing measurements must achieve point-spread functions smaller than a median of 0.6" FWHM.Comment: 35 pages, 24 figures, accepted to A&A, a version with better figure resolution can be found at http://www.mpa-garching.mpg.de/ediscs/papers.htm
    corecore