1,101 research outputs found
Calibration of the Mass-Temperature Relation for Clusters of Galaxies Using Weak Gravitational Lensing
The main uncertainty in current determinations of the power spectrum
normalization, sigma_8, from abundances of X-ray luminous galaxy clusters
arises from the calibration of the mass-temperature relation. We use our weak
lensing mass determinations of 30 clusters from the hitherto largest sample of
clusters with lensing masses, combined with X-ray temperature data from the
literature, to calibrate the normalization of this relation at a temperature of
8 keV, M_{500c,8 keV}=(8.7 +/- 1.6) h^{-1} 10^{14} M_sun. This normalization is
consistent with previous lensing-based results based on smaller cluster
samples, and with some predictions from numerical simulations, but higher than
most normalizations based on X-ray derived cluster masses. Assuming the
theoretically expected slope alpha=3/2 of the mass-temperature relation, we
derive sigma_8 = 0.88 +/-0.09 for a spatially-flat LambdaCDM universe with
Omega_m = 0.3. The main systematic errors on the lensing masses result from
extrapolating the cluster masses beyond the field-of-view used for the
gravitational lensing measurements, and from the separation of
cluster/background galaxies, contributing each with a scatter of 20%. Taking
this into account, there is still significant intrinsic scatter in the
mass-temperature relation indicating that this relation may not be very tight,
at least at the high mass end. Furthermore, we find that dynamically relaxed
clusters are 75 +/-40% hotter than non-relaxed clusters.Comment: 8 pages, 4 figures, revised version submitted to Ap
Spatially Resolved Outflows in a Seyfert Galaxy at z = 2.39
We present the first spatially resolved analysis of rest-frame optical and UV
imaging and spectroscopy for a lensed galaxy at z = 2.39 hosting a Seyfert
active galactic nucleus (AGN). Proximity to a natural guide star has enabled
high signal-to-noise VLT SINFONI + adaptive optics observations of rest-frame
optical diagnostic emission lines, which exhibit an underlying broad component
with FWHM ~ 700 km/s in both the Balmer and forbidden lines. Measured line
ratios place the outflow robustly in the region of the ionization diagnostic
diagrams associated with AGN. This unique opportunity - combining gravitational
lensing, AO guiding, redshift, and AGN activity - allows for a magnified view
of two main tracers of the physical conditions and structure of the
interstellar medium in a star-forming galaxy hosting a weak AGN at cosmic noon.
By analyzing the spatial extent and morphology of the Ly-alpha and
dust-corrected H-alpha emission, disentangling the effects of star formation
and AGN ionization on each tracer, and comparing the AGN induced mass outflow
rate to the host star formation rate, we find that the AGN does not
significantly impact the star formation within its host galaxy.Comment: 16 pages, 5 figures, accepted for publication in Ap
Prospects for high-z cluster detections with Planck, based on a follow-up of 28 candidates using MegaCam@CFHT
The Planck catalogue of SZ sources limits itself to a significance threshold
of 4.5 to ensure a low contamination rate by false cluster candidates. This
means that only the most massive clusters at redshift z>0.5, and in particular
z>0.7, are expected to enter into the catalogue, with a large number of systems
in that redshift regime being expected around and just below that threshold. In
this paper, we follow-up a sample of SZ sources from the Planck SZ catalogues
from 2013 and 2015. In the latter maps, we consider detections around and at
lower significance than the threshold adopted by the Planck Collaboration. To
keep the contamination rate low, our 28 candidates are chosen to have
significant WISE detections, in combination with non-detections in SDSS/DSS,
which effectively selects galaxy cluster candidates at redshifts .
By taking r- and z-band imaging with MegaCam@CFHT, we bridge the 4000A
rest-frame break over a significant redshift range, thus allowing accurate
redshift estimates of red-sequence cluster galaxies up to z~0.8. After
discussing the possibility that an overdensity of galaxies coincides -by
chance- with a Planck SZ detection, we confirm that 16 of the candidates have
likely optical counterparts to their SZ signals, 13 (6) of which have an
estimated redshift z>0.5 (z>0.7). The richnesses of these systems are generally
lower than expected given the halo masses estimated from the Planck maps.
However, when we follow a simplistic model to correct for Eddington bias in the
SZ halo mass proxy, the richnesses are consistent with a reference
mass-richness relation established for clusters detected at higher
significance. This illustrates the benefit of an optical follow-up, not only to
obtain redshift estimates, but also to provide an independent mass proxy that
is not based on the same data the clusters are detected with, and thus not
subject to Eddington bias.Comment: 13 pages, 7 figures. Accepted for publication in A&
Annihilation of NMSSM neutralinos in the Sun and neutrino telescope limits
We investigate neutralino dark matter in the framework of NMSSM performing a
scan over its parameter space and calculating neutralino capture and
annihilation rates in the Sun. We discuss the prospects of searches for
neutralino dark matter in neutrino experiments depending on neutralino content
and its main annihilation channel. We recalculate the upper limits on
neutralino-proton elastic cross sections directly from neutrino telescopes
upper bounds on annihilation rates in the Sun. This procedure has advantages as
compared with corresponding recalcalations from the limits on muon flux,
namely, it is independent on details of the experiment and the recalculation
coefficients are universal for any kind of WIMP dark matter models. We derive
90% c.l. upper limits on neutralino-proton cross sections from the results of
the Baksan Underground Scintillator Telescope.Comment: 28 pages, 16 figures, accepted for publication in JCAP, references
adde
Weak Gravitational Lensing by a Sample of X-Ray Luminous Clusters of Galaxies -- II. Comparison with Virial Masses
Dynamic velocity dispersion and mass estimates are given for a sample of five
X-ray luminous rich clusters of galaxies at intermediate redshifts (z~0.3)
drawn from a sample of 39 clusters for which we have obtained gravitational
lens mass estimates. The velocity dispersions are determined from between 9 and
20 redshifts measured with the LDSS spectrograph of the William Herschel
Telescope, and virial radii are determined from imaging using the UH8K mosaic
CCD camera on the University of Hawaii 2.24m telescope.
Including clusters with velocity dispersions taken from the literature, we
have velocity dispersion estimates for 12 clusters in our gravitational lensing
sample. For this sample we compare the dynamical velocity dispersion estimates
with our estimates of the velocity dispersions made from gravitational lensing
by fitting a singular isothermal sphere profile to the observed tangential weak
lensing distortion as a function of radius. In all but two clusters, we find a
good agreement between the velocity dispersion estimates based on spectroscopy
and on weak lensing.Comment: 9 pages, 4 figures, accepted for publication in ApJ. Version in
emulateapj format with only minor change
A weak lensing analysis of the PLCK G100.2-30.4 cluster
We present a mass estimate of the Planck-discovered cluster PLCK G100.2-30.4,
derived from a weak lensing analysis of deep SUBARU griz images. We perform a
careful selection of the background galaxies using the multi-band imaging data,
and undertake the weak lensing analysis on the deep (1hr) r-band image. The
shape measurement is based on the KSB algorithm; we adopt the PSFex software to
model the Point Spread Function (PSF) across the field and correct for this in
the shape measurement. The weak lensing analysis is validated through extensive
image simulations. We compare the resulting weak lensing mass profile and total
mass estimate to those obtained from our re-analysis of XMM-Newton
observations, derived under the hypothesis of hydrostatic equilibrium. The
total integrated mass profiles are in remarkably good agreement, agreeing
within 1 across their common radial range. A mass is derived for the cluster from our weak lensing
analysis. Comparing this value to that obtained from our reanalysis of
XMM-Newton data, we obtain a bias factor of (1-b) = 0.8 0.1. This is
compatible within 1 with the value of (1-b) obtained by Planck
Collaboration XXIV from their calibration of the bias factor using
newly-available weak lensing reconstructed masses.Comment: 11 pages, 12 figures, accepted for publication on Astronomy &
Astrophysics; updates in affiliation
Chandra and XMM-Newton observations of the merging cluster of galaxies PLCK G036.7+14.9
We present Chandra and XMM-Newton observations of PLCK G036.7+14.9 from the
Chandra-Planck Legacy Program. The high resolution X-ray observations reveal
two close subclusters, G036N and G036S, which were not resolved by previous
ROSAT, optical, or recent Planck observations. We perform detailed imaging and
spectral analyses and use a simplified model to study the kinematics of this
system. The basic picture is that PLCK G036.7+14.9 is undergoing a major merger
(mass ratio close to unity) between the two massive subclusters, with the
merger largely along the line-of-sight and probably at an early stage. G036N
hosts a small, moderate cool-core, while G036S has at most a very weak
cool-core in the central 40 kpc region. The difference in core cooling times is
unlikely to be caused by the ongoing merger disrupting a pre-existing cool-core
in G036S. G036N also hosts an unresolved radio source in the center, which may
be heating the gas if the radio source is extended. The Planck derived mass is
higher than the X-ray measured mass of either subcluster, but is lower than the
X-ray measured mass of the whole cluster, due to the fact that Planck does not
resolve PLCK G036.7+14.9 into subclusters and interprets it as a single
cluster. This mass discrepancy could induce significant bias to the mass
function if such previously unresolved systems are common in the Planck cluster
sample. High resolution X-ray observations are necessary to identify the
fraction of such systems and correct such a bias for the purpose of precision
cosmological studies.Comment: 23 pages, 8 figures (low resolution) with additional 12 figures in
the Appendix, accepted for publication in Ap
Weak lensing mass reconstructions of the ESO Distant Cluster Survey
We present weak lensing mass reconstructions for the 20 high-redshift
clusters i n the ESO Distant Cluster Survey. The weak lensing analysis was
performed on deep, 3-color optical images taken with VLT/FORS2, using a
composite galaxy catalog with separate shape estimators measured in each
passband. We find that the EDisCS sample is composed primarily of clusters that
are less massive than t hose in current X-ray selected samples at similar
redshifts, but that all of the fields are likely to contain massive clusters
rather than superpositions of low mass groups. We find that 7 of the 20 fields
have additional massive structures which are not associated with the clusters
and which can affect the weak lensing mass determination. We compare the mass
measurements of the remaining 13 clusters with luminosity measurements from
cluster galaxies selected using photometric redshifts and find evidence of a
dependence of the cluster mass-to-light ratio with redshift. Finally we
determine the noise level in the shear measurements for the fields as a
function of exposure time and seeing and demonstrate that future ground-based
surveys which plan to perform deep optical imaging for use in weak lensing
measurements must achieve point-spread functions smaller than a median of 0.6"
FWHM.Comment: 35 pages, 24 figures, accepted to A&A, a version with better figure
resolution can be found at http://www.mpa-garching.mpg.de/ediscs/papers.htm
- …
