We present the first spatially resolved analysis of rest-frame optical and UV
imaging and spectroscopy for a lensed galaxy at z = 2.39 hosting a Seyfert
active galactic nucleus (AGN). Proximity to a natural guide star has enabled
high signal-to-noise VLT SINFONI + adaptive optics observations of rest-frame
optical diagnostic emission lines, which exhibit an underlying broad component
with FWHM ~ 700 km/s in both the Balmer and forbidden lines. Measured line
ratios place the outflow robustly in the region of the ionization diagnostic
diagrams associated with AGN. This unique opportunity - combining gravitational
lensing, AO guiding, redshift, and AGN activity - allows for a magnified view
of two main tracers of the physical conditions and structure of the
interstellar medium in a star-forming galaxy hosting a weak AGN at cosmic noon.
By analyzing the spatial extent and morphology of the Ly-alpha and
dust-corrected H-alpha emission, disentangling the effects of star formation
and AGN ionization on each tracer, and comparing the AGN induced mass outflow
rate to the host star formation rate, we find that the AGN does not
significantly impact the star formation within its host galaxy.Comment: 16 pages, 5 figures, accepted for publication in Ap