862 research outputs found

    What Causes High Resistivity in CdTe

    Full text link
    CdTe can be made semi-insulating by shallow donor doping. This is routinely done to obtain high resistivity in CdTe-based radiation detectors. However, it is widely believed that the high resistivity in CdTe is due to the Fermi level pinning by native deep donors. The model based on shallow donor compensation of native acceptors was dismissed based on the assumption that it is practically impossible to control the shallow donor doping level so precisely that the free carrier density can be brought below the desired value suitable for radiation detection applications. In this paper, we present our calculations on carrier statistics and energetics of shallow donors and native defects in CdTe. Our results show that the shallow donor can be used to reliably obtain high resistivity in CdTe. Since radiation detection applications require both high resistivity and good carrier transport, one should generally use shallow donors and shallow acceptors for carrier compensation and avoid deep centers that are effective carrier traps

    A Carleman type theorem for proper holomorphic embeddings

    Full text link
    In 1927, Carleman showed that a continuous, complex-valued function on the real line can be approximated in the Whitney topology by an entire function restricted to the real line. In this paper, we prove a similar result for proper holomorphic embeddings. Namely, we show that a proper \cC^r embedding of the real line into \C^n can be approximated in the strong \cC^r topology by a proper holomorphic embedding of \C into \C^n

    Support for collective action against refugees: The role of national, European, and global identifications, and autochthony beliefs

    Get PDF
    To understand recent anti-refugee protests in Europe, we examined how different levels of inclusiveness of group identities (national, European, and global) are related to intentions to protest among native Europeans. We focused on the mediating role of autochthony (a belief that the first inhabitants of a territory are more entitled) and the moderating role of threat. Survey data from 11 European countries (N=1909) showed that national identification was positively associated with autochthony, and therefore, with the intention to protest against refugees. In contrast, global identification was related to lower protest intentions via lower autochthony. These paths were found only among Europeans who perceived refugees as a threat. European identification was not related to the endorsement of autochthony or to collective action. These findings indicate why and when majority members are willing to participate in collective action against refugees, and underscore the importance of global identification in the acceptance of refugees

    Brucellosis remains a neglected disease inthe developing world: a call forinterdisciplinary action

    Get PDF
    Brucellosis places significant burdens on the human healthcare system and limits the economic growth of individuals, communities, and nations where such development is especially important to diminish the prevalence of poverty. The implementation of public policy focused on mitigating the socioeconomic effects of brucellosis in human and animal populations is desperately needed. When developing a plan to mitigate the associated consequences, it is vital to consider both the abstract and quantifiable effects. This requires an interdisciplinary and collaborative, or One Health, approach that consists of public education, the development of an infrastructure for disease surveillance and reporting in both veterinary and medical fields, and campaigns for control in livestock and wildlife species

    On Uniformly Sampling Traces of a Transition System (Extended Version)

    Full text link
    A key problem in constrained random verification (CRV) concerns generation of input stimuli that result in good coverage of the system's runs in targeted corners of its behavior space. Existing CRV solutions however provide no formal guarantees on the distribution of the system's runs. In this paper, we take a first step towards solving this problem. We present an algorithm based on Algebraic Decision Diagrams for sampling bounded traces (i.e. sequences of states) of a sequential circuit with provable uniformity (or bias) guarantees, while satisfying given constraints. We have implemented our algorithm in a tool called TraceSampler. Extensive experiments show that TraceSampler outperforms alternative approaches that provide similar uniformity guarantees.Comment: Extended version of paper that will appear in proceedings of International Conference on Computer-Aided Design (ICCAD '20); changed wrong text color in sec 7; added 'extended version

    Probing seed black holes using future gravitational-wave detectors

    Full text link
    Identifying the properties of the first generation of seeds of massive black holes is key to understanding the merger history and growth of galaxies. Mergers between ~100 solar mass seed black holes generate gravitational waves in the 0.1-10Hz band that lies between the sensitivity bands of existing ground-based detectors and the planned space-based gravitational wave detector, the Laser Interferometer Space Antenna (LISA). However, there are proposals for more advanced detectors that will bridge this gap, including the third generation ground-based Einstein Telescope and the space-based detector DECIGO. In this paper we demonstrate that such future detectors should be able to detect gravitational waves produced by the coalescence of the first generation of light seed black-hole binaries and provide information on the evolution of structure in that era. These observations will be complementary to those that LISA will make of subsequent mergers between more massive black holes. We compute the sensitivity of various future detectors to seed black-hole mergers, and use this to explore the number and properties of the events that each detector might see in three years of observation. For this calculation, we make use of galaxy merger trees and two different seed black hole mass distributions in order to construct the astrophysical population of events. We also consider the accuracy with which networks of future ground-based detectors will be able to measure the parameters of seed black hole mergers, in particular the luminosity distance to the source. We show that distance precisions of ~30% are achievable, which should be sufficient for us to say with confidence that the sources are at high redshift.Comment: 14 pages, 6 figures, 2 tables, accepted for proceedings of 13th GWDAW meetin

    Virgo calibration and reconstruction of the gravitational wave strain during VSR1

    Get PDF
    Virgo is a kilometer-length interferometer for gravitational waves detection located near Pisa. Its first science run, VSR1, occured from May to October 2007. The aims of the calibration are to measure the detector sensitivity and to reconstruct the time series of the gravitational wave strain h(t). The absolute length calibration is based on an original non-linear reconstruction of the differential arm length variations in free swinging Michelson configurations. It uses the laser wavelength as length standard. This method is used to calibrate the frequency dependent response of the Virgo mirror actuators and derive the detector in-loop response and sensitivity within ~5%. The principle of the strain reconstruction is highlighted and the h(t) systematic errors are estimated. A photon calibrator is used to check the sign of h(t). The reconstructed h(t) during VSR1 is valid from 10 Hz up to 10 kHz with systematic errors estimated to 6% in amplitude. The phase error is estimated to be 70 mrad below 1.9 kHz and 6 micro-seconds above.Comment: 8 pages, 8 figures, proceedings of Amaldi 8 conference, to be published in Journal of Physics Conference Series (JPCS). Second release: correct typo

    Calibration and sensitivity of the Virgo detector during its second science run

    Full text link
    The Virgo detector is a kilometer-length interferometer for gravitational wave detection located near Pisa (Italy). During its second science run (VSR2) in 2009, six months of data were accumulated with a sensitivity close to its design. In this paper, the methods used to determine the parameters for sensitivity estimation and gravitational wave reconstruction are described. The main quantities to be calibrated are the frequency response of the mirror actuation and the sensing of the output power. Focus is also put on their absolute timing. The monitoring of the calibration data as well as the parameter estimation with independent techniques are discussed to provide an estimation of the calibration uncertainties. Finally, the estimation of the Virgo sensitivity in the frequency-domain is described and typical sensitivities measured during VSR2 are shown.Comment: 30 pages, 23 figures, 1 table. Published in Classical and Quantum Gravity (CQG), Corrigendum include
    • …
    corecore