1,357 research outputs found

    The Atmospheric Chemistry Suite (ACS) of Three Spectrometers for the ExoMars 2016 Trace Gas Orbiter

    Get PDF
    The Atmospheric Chemistry Suite (ACS) package is an element of the Russian contribution to the ESA-Roscosmos ExoMars 2016 Trace Gas Orbiter (TGO) mission. ACS consists of three separate infrared spectrometers, sharing common mechanical, electrical, and thermal interfaces. This ensemble of spectrometers has been designed and developed in response to the Trace Gas Orbiter mission objectives that specifically address the requirement of high sensitivity instruments to enable the unambiguous detection of trace gases of potential geophysical or biological interest. For this reason, ACS embarks a set of instruments achieving simultaneously very high accuracy (ppt level), very high resolving power (>10,000) and large spectral coverage (0.7 to 17 μm—the visible to thermal infrared range). The near-infrared (NIR) channel is a versatile spectrometer covering the 0.7–1.6 μm spectral range with a resolving power of ∼20,000. NIR employs the combination of an echelle grating with an AOTF (Acousto-Optical Tunable Filter) as diffraction order selector. This channel will be mainly operated in solar occultation and nadir, and can also perform limb observations. The scientific goals of NIR are the measurements of water vapor, aerosols, and dayside or night side airglows. The mid-infrared (MIR) channel is a cross-dispersion echelle instrument dedicated to solar occultation measurements in the 2.2–4.4 μm range. MIR achieves a resolving power of >50,000. It has been designed to accomplish the most sensitive measurements ever of the trace gases present in the Martian atmosphere. The thermal-infrared channel (TIRVIM) is a 2-inch double pendulum Fourier-transform spectrometer encompassing the spectral range of 1.7–17 μm with apodized resolution varying from 0.2 to 1.3 cm−1. TIRVIM is primarily dedicated to profiling temperature from the surface up to ∼60 km and to monitor aerosol abundance in nadir. TIRVIM also has a limb and solar occultation capability. The technical concept of the instrument, its accommodation on the spacecraft, the optical designs as well as some of the calibrations, and the expected performances for its three channels are described

    Genome editing using CRISPR/ Cas9 system: a practical guide

    Get PDF
    Over the past few years, the CRISPR/Cas techniques have become a revolution in genome editing. Since the original paper on CRIPSR/Cas9 genome editing, researches have proposed numerous modifications of the key components of the CRISPR/Cas9 system to make it extremely efficient. Nowadays, CRISPR/Cas systems can be used not only to modify genomes, but also to control expression levels of defined genes, visualize loci of interest in the space of living cell nuclei, change methylation status of mammalian CpG sites, and to serve many other purposes. Due to an extremely high efficacy and ease of usage, the CRISPR/ Cas system has been employed in a large number of studies in various areas of biology and biotechnology. We have recently published a review describing various CRISPR/Cas systems, mechanisms of their functioning, and applications of the techniques in details. Despite the broad range of potential applications of CRISPR/Cas systems, they are mostly used for genome editing. And, however simple the system may be, there is a number of potential pitfalls on the way towards its use in CRISPR/Cas- naïve laboratory settings. In this article, we describe protocols of CRISPR/Cas9 system generation. We start with a short description of theoretical aspects underlying Cas9-mediated genome editing. Next, we describe a step-by-step protocol of guide RNA vector design and assembly, and several ways of qualitative and quantitative evaluations of the system. Finally, we report protocols of genome editing for modification of embryonic stem cells and zygotes

    Doppler confirmation of TESS planet candidate TOI1408.01: grazing transit and likely eccentric orbit

    Full text link
    We report an independent Doppler confirmation of the TESS planet candidate orbiting an F-type main sequence star TOI-1408 located 140 pc away. We present a set of radial velocities obtained with a high-resolution fiber-optic spectrograph FFOREST mounted at the SAO RAS 6-m telescope (BTA-6). Our self-consistent analysis of these Doppler data and TESS photometry suggests a grazing transit such that the planet obscures its host star by only a portion of the visible disc. Because of this degeneracy, the radius of TOI-1408.01 appears ill-determined with lower limit about \sim1 RJup_{\rm Jup}, significantly larger than in the current TESS solution. We also derive the planet mass of 1.69±0.201.69\pm0.20~MJupM_{\rm Jup} and the orbital period 4.425\sim4.425 days, thus making this object a typical hot Jupiter, but with a significant orbital eccentricity of 0.259±0.0260.259\pm0.026. Our solution may suggest the planet is likely to experience a high tidal eccentricity migration at the stage of intense orbital rounding, or may indicate possible presence of other unseen companions in the system, yet to be detected.Comment: 5 pages, 3 figure

    Recent Borexino results and prospects for the near future

    Full text link
    The Borexino experiment, located in the Gran Sasso National Laboratory, is an organic liquid scintillator detector conceived for the real time spectroscopy of low energy solar neutrinos. The data taking campaign phase I (2007 - 2010) has allowed the first independent measurements of 7Be, 8B and pep fluxes as well as the first measurement of anti-neutrinos from the earth. After a purification of the scintillator, Borexino is now in phase II since 2011. We review here the recent results achieved during 2013, concerning the seasonal modulation in the 7Be signal, the study of cosmogenic backgrounds and the updated measurement of geo-neutrinos. We also review the upcoming measurements from phase II data (pp, pep, CNO) and the project SOX devoted to the study of sterile neutrinos via the use of a 51Cr neutrino source and a 144Ce-144Pr antineutrino source placed in close proximity of the active material.Comment: 8 pages, 11 figures. To be published as proceedings of Rencontres de Moriond EW 201

    Low-energy (anti)neutrino physics with Borexino: Neutrinos from the primary proton-proton fusion process in the Sun

    Full text link
    The Sun is fueled by a series of nuclear reactions that produce the energy that makes it shine. The primary reaction is the fusion of two protons into a deuteron, a positron and a neutrino. These neutrinos constitute the vast majority of neutrinos reaching Earth, providing us with key information about what goes on at the core of our star. Several experiments have now confirmed the observation of neutrino oscillations by detecting neutrinos from secondary nuclear processes in the Sun; this is the first direct spectral measurement of the neutrinos from the keystone proton-proton fusion. This observation is a crucial step towards the completion of the spectroscopy of pp-chain neutrinos, as well as further validation of the LMA-MSW model of neutrino oscillations.Comment: Proceedings from NOW (Neutrino Oscillation Workshop) 201

    Thermal Structure and Aerosols in Mars’ Atmosphere From TIRVIM/ACS Onboard the ExoMars Trace Gas Orbiter : Validation of the Retrieval Algorithm

    Get PDF
    Funding Information: ExoMars is a space mission of ESA and Roscosmos. The ACS experiment is led by IKI, the Space Research Institute in Moscow, Russia, assisted by LATMOS in France. This work, exploiting ACS/TIRVIM data, acknowledges funding by CNES. The science operations of ACS are funded by Roscosmos and ESA. R. M. B. Young acknowledges support from UAE University grants G00003322 and G00003590. ACS/TIRVIM team at IKI acknowledges the subsidy of the Ministry of Science and High Education of Russia. The authors warmly thank Michael Smith and another anonymous reviewer for their thorough review of our manuscript. Publisher Copyright: © 2022 The Authors.Peer reviewe

    Eight exoplanet candidates in SAO survey

    Full text link
    Here we present eight new candidates for exoplanets detected by the transit method at the Special Astrophysical Observatory of the Russian Academy of Sciences. Photometric observations were performed with a 50-cm robotic telescope during the second half of 2020. We detected transits with depths of Δm=0.0560.173m\Delta m = 0.056-0.173^m and periods P=18.8h8.3dP = 18.8^h-8.3^d in the light curves of stars with magnitudes of m=14.318.8mm = 14.3-18.8^m. All considered stars are classified as dwarfs with radii of R=0.40.6RsunR_* = 0.4-0.6 R_{sun} (with the uncertainty for one star up to 1.1Rsun1.1 R_{sun}). We estimated the candidate radii (all are greater than 1.4 times the Jovian radius), semi-major axes of their orbits (0.0120.035AU0.012-0.035 AU), and other orbital parameters by modelling. We report the light curves with transits for two stars obtained in 2022 based on individual observations.Comment: 16 pages, 14 figures, 3 table
    corecore