1,957 research outputs found
An off-shell I.R. regularization strategy in the analysis of collinear divergences
We present a method for the analysis of singularities of Feynman amplitudes
based on the Speer sector decomposition of the Schwinger parametric integrals
combined with the Mellin-Barnes transform. The sector decomposition method is
described in some details. We suggest the idea of applying the method to the
analysis of collinear singularities in inclusive QCD cross sections in the
mass-less limit regularizing the forward amplitudes by an off-shell choice of
the initial particle momenta. It is shown how the suggested strategy works in
the well known case of the one loop corrections to Deep Inelastic Scattering.Comment: 25 pages, 3 figure
Evaluation of the program ‘understanding and learning in the classroom’
We present the program “understanding and learning in the classroom” centered on the improvement of reading comprehension strategies. We present also an evaluation of this program
The Formation of Cataclysmic Variables: The Influence of Nova Eruptions
The theoretical and observed populations of pre-cataclysmic variables are dominated by systems with low-mass white dwarfs (WDs), while the WD masses in cataclysmic variables (CVs) are typically high. In addition, the space density of CVs is found to be significantly lower than in the theoretical models. We investigate the influence of nova outbursts on the formation and initial evolution of CVs. In particular, we calculate the stability of the mass transfer in the case where all of the material accreted on the WD is lost in classical novae and part of the energy to eject the material comes from a common-envelope-like interaction with the companion. In addition, we study the effect of an asymmetry in the mass ejection that may lead to small eccentricities in the orbit. We find that a common-envelope-like ejection significantly decreases the stability of the mass transfer, particularly for low-mass WDs. Similarly, the influence of asymmetric mass loss can be important for short-period systems and even more so for low-mass WDs; however, this influence likely disappears long before the next nova outburst due to orbital circularization. In both cases the mass-transfer rates increase, which may lead to observable (and perhaps already observed) consequences for systems that do survive to become CVs. However, a more detailed investigation of the interaction between nova ejecta and the companion and the evolution of slightly eccentric CVs is needed before definite conclusions can be drawn
The ePetri dish, an on-chip cell imaging platform based on subpixel perspective sweeping microscopy (SPSM)
We report a chip-scale lensless wide-field-of-view microscopy imaging technique, subpixel perspective sweeping microscopy, which can render microscopy images of growing or confluent cell cultures autonomously. We demonstrate that this technology can be used to build smart Petri dish platforms, termed ePetri, for cell culture experiments. This technique leverages the recent broad and cheap availability of high performance image sensor chips to provide a low-cost and automated microscopy solution. Unlike the two major classes of lensless microscopy methods, optofluidic microscopy and digital in-line holography microscopy, this new approach is fully capable of working with cell cultures or any samples in which cells may be contiguously connected. With our prototype, we demonstrate the ability to image samples of area 6 mm × 4 mm at 660-nm resolution. As a further demonstration, we showed that the method can be applied to image color stained cell culture sample and to image and track cell culture growth directly within an incubator. Finally, we showed that this method can track embryonic stem cell differentiations over the entire sensor surface. Smart Petri dish based on this technology can significantly streamline and improve cell culture experiments by cutting down on human labor and contamination risks
Critical boron-doping levels for generation of dislocations in synthetic diamond
Defects induced by boron doping in diamond layers were studied by transmission electron microscopy. The existence of a critical boron doping level above which defects are generated is reported. This level is found to be dependent on the CH4
/H2 molar ratios and on growth directions. The critical boron concentration lied in the 6.5–17.0 X 10 20 at/cm3 range in the direction and at 3.2 X 1021 at/cm
3 for the one. Strain related effects induced by the doping are shown not to
be responsible. From the location of dislocations and their Burger vectors, a model is proposed, together with their generation mechanism.6 page
Second harmonic generation on self-assembled GaAs/Au nanowires with thickness gradient
Here we investigated the SH generation at the wavelength of 400 nm (pump laser at 800 nm, 120 fs pulses) of a "metasurface" composed by an alternation of GaAs nano-grooves and Au nanowires capping portions of flat GaAs. The nano-grooves depth and the Au nanowires thickness gradually vary across the sample. The samples are obtained by ion bombardment at glancing angle on a 150 nm Au mask evaporated on a GaAs plane wafer. The irradiation process erodes anisotropically the surface, creating Au nanowires and, at high ion dose, grooves in the underlying GaAs substrate (pattern transfer). The SHG measurements are performed for different pump linear polarization angle at different positions on the "metasurface" in order to explore the regions with optimal conditions for SHG efficiency. The pump polarization angle is scanned by rotating a half-wave retarder plate. While the output SH signal in reflection is analyzed by setting the polarizer in s or p configuration in front of the detector. The best polarization condition for SHG is obtained in the configuration where the pump and second harmonic fields are both p polarized, and the experiments show a SH polarization dependence of the same symmetry of bulk GaAs. Thus, the presence of gold contributes only as field localization effect, but do not contributes directly as SH generator
Power Losses in Magnetic Laminations with Hysteresis: Finite Element Modeling and Experimental Validation
Constraining the nature of the accreting binary in CXOGBS J174623.5-310550
We report optical and infrared observations of the X-ray source CXOGBS
J174623.5-310550. This Galactic object was identified as a potential quiescent
low-mass X-ray binary accreting from an M-type donor on the basis of optical
spectroscopy and the broad Halpha emission line. The analysis of X-shooter
spectroscopy covering 3 consecutive nights supports an M2/3-type spectral
classification. Neither radial velocity variations nor rotational broadening is
detected in the photospheric lines. No periodic variability is found in I- and
r'-band light curves. We derive r' = 20.8, I = 19.2 and Ks = 16.6 for the
optical and infrared counterparts with the M-type star contributing 90% to the
I-band light. We estimate its distance to be 1.3-1.8 kpc. The lack of radial
velocity variations implies that the M-type star is not the donor star in the
X-ray binary. This could be an interloper or the outer body in a hierarchical
triple. We constrain the accreting binary to be a < 2.2 hr orbital period
eclipsing cataclysmic variable or a low-mass X-ray binary lying in the
foreground of the Galactic Bulge.Comment: (9 pages, 5 figures, accepted for publication in MNRAS
- …
