405 research outputs found

    The southernmost beech (Fagus sylvatica) forests of Europe (Mount Etna, Italy): ecology, structural stand-type diversity and management implications

    Get PDF
    The southernmost European beech forests are located in the upper forest vegetation belt on Mount Etna volcano. Their standstructural patterns were analysed to assess the effects of the site-ecological factors and previous management practices on the forest structure. Five main structural-silvicultural types were identified among the main beech forest types: coppice, highmountain coppice (HMCo), high forest, coppice in conversion to high-forest and non-formal stand. A detailed standstructural analysis was carried out through measured dendrometric parameters and derived structural characters linked to both the horizontal and the vertical profiles. Plant regeneration processes were also assessed, and several biodiversity indicators were calculated. The collected data indicate a high variability of beech stand structures in relation to the heterogeneity of the site-ecological characteristics as well as to the effects of both natural and anthropic disturbance factors. The occurrence of particular stand structures along the altitude gradient on Mount Etna is evident. It is especially visible in the multi-stemmed HMCos in relation to the changing, and increasingly limiting, ecological factors, although at higher altitudes historical anthropic actions (felling) also have had an influence. Inside the Mediterranean area, these stands highlight their ecological marginality, in terms of both latitude and altitude, especially regarding current climate change processes

    Enhanced ozone strongly reduces carbon sink strength of adult beech (Fagus sylvatica) – Resume from the free-air fumigation study at Kranzberg Forest

    Get PDF
    Ground-level ozone (O3) has gained awareness as an agent of climate change. In this respect, key results are comprehended from a unique 8-year free-air O3-fumigation experiment, conducted on adult beech (Fagus sylvatica) at Kranzberg Forest (Germany). A novel canopy O3 exposure methodology was employed that allowed whole-tree assessment in situ under twice-ambient O3 levels. Elevated O3 significantly weakened the C sink strength of the tree–soil system as evidenced by lowered photosynthesis and 44% reduction in whole-stem growth, but increased soil respiration. Associated effects in leaves and roots at the gene, cell and organ level varied from year to year, with drought being a crucial determinant of O3 responsiveness. Regarding adult individuals of a late-successional tree species, empirical proof is provided first time in relation to recent modelling predictions that enhanced ground-level O3 can substantially mitigate the C sequestration of forests in view of climate change

    Effect of platelet inhibition with perioperative aspirin on survival in patients undergoing curative resection for pancreatic cancer: a propensity score matched analysis

    Get PDF
    BACKGROUND The importance of platelets in the pathogenesis of metastasis formation is increasingly recognized. Although evidence from epidemiologic studies suggests positive effects of aspirin on metastasis formation, there is little clinical data on the perioperative use of this drug in pancreatic cancer patients. METHODS From all patients who received curative intent surgery for pancreatic cancer between 2014 and 2016 at our institution, we identified 18 patients that took aspirin at time of admission and continued to throughout the inpatient period. Using propensity score matching, we selected a control group of 64 patients without aspirin intake from our database and assessed the effect of aspirin medication on overall, disease-free, and hematogenous metastasis-free survival intervals as endpoints. RESULTS Aspirin intake proved to be independently associated with improved mean overall survival (OS) (46.5 vs. 24.6 months, *p = 0.006), median disease-free survival (DFS) (26 vs. 10.5 months, *p = 0.001) and mean hematogenous metastasis-free survival (HMFS) (41.9 vs. 16.3 months, *p = 0.005). Three-year survival rates were 61.1% in patients with aspirin intake vs. 26.3% in patients without aspirin intake. Multivariate cox regression showed significant independent association of aspirin with all three survival endpoints with hazard ratios of 0.36 (95% CI 0.15-0.86) for OS (*p = 0.021), 0.32 (95% CI 0.16-0.63) for DFS (**p = 0.001), and 0.36 (95% CI 0.16-0.77) for HMFS (*p = 0.009). CONCLUSIONS Patients in our retrospective, propensity-score matched study showed significantly better overall survival when taking aspirin while undergoing curative surgery for pancreatic cancer. This was mainly due to a prolonged metastasis-free interval following surgery

    Effects of growth rate, size, and light availability on tree survival across life stages: a demographic analysis accounting for missing values and small sample sizes.

    Get PDF
    The data set supporting the results of this article is available in the Dryad repository, http://dx.doi.org/10.5061/dryad.6f4qs. Moustakas, A. and Evans, M. R. (2015) Effects of growth rate, size, and light availability on tree survival across life stages: a demographic analysis accounting for missing values.Plant survival is a key factor in forest dynamics and survival probabilities often vary across life stages. Studies specifically aimed at assessing tree survival are unusual and so data initially designed for other purposes often need to be used; such data are more likely to contain errors than data collected for this specific purpose

    Seasonal variations in carbon, nitrogen and phosphorus concentrations and C:N:P stoichiometry in different organs of a Larix principis-rupprechtii Mayr. plantation in the Qinling Mountains, China

    Get PDF
    Understanding how concentrations of elements and their stoichiometry change with plant growth and age is critical for predicting plant community responses to environmental change. Weusedlong-term field experiments to explore how the leaf, stem and root carbon (C), nitrogen (N) and phosphorous (P) concentrations and their stoichiometry changed with growth and stand age in a L.principis-rupprechtii Mayr. plantation from 2012–2015 in the Qinling Mountains, China. Our results showed that the C, N and P concentrations and stoichiometric ratios in different tissues of larch stands were affected by stand age, organ type andsampling month and displayed multiple correlations with increased stand age in different growing seasons. Generally, leaf C and N concentrations were greatest in the fast-growing season, but leaf P concentrations were greatest in the early growing season. However, no clear seasonal tendencies in the stem and root C, N and P concentrations were observed with growth. In contrast to N and P, few differences were found in organ-specific C concentrations. Leaf N:P was greatest in the fast-growing season, while C:N and C:P were greatest in the late-growing season. No clear variations were observed in stem and root C:N, C:P andN:Pthroughout the entire growing season, but leaf N:P was less than 14, suggesting that the growth of larch stands was limited by N in our study region. Compared to global plant element concentrations and stoichiometry, the leaves of larch stands had higher C, P, C:NandC:PbutlowerNandN:P,andtherootshadgreater PandC:NbutlowerN,C:Pand N:P. Our study provides baseline information for describing the changes in nutritional elements with plant growth, which will facilitates plantation forest management and restoration, and makes avaluable contribution to the global data pool on leaf nutrition and stoichiometry

    Species mixing reduces drought susceptibility of Scots pine (Pinus sylvestris L.) and oak (Quercus robur L., Quercus petraea (Matt.) Liebl.) – Site water supply and fertility modify the mixing effect

    Get PDF
    Tree species mixing has been widely promoted as a promising silvicultural tool for reducing drought stress. However, so far only a limited number of species combinations have been studied in detail, revealing inconsistent results. In this study, we analysed the effect of mixing Scots pine and oak (pedunculate oak and sessile oak) trees on their drought response along a comprehensive ecological gradient across Europe. The objective was to improve our knowledge of general drought response patterns of two fundamental European tree species in mixed versus monospecific stands. We focused on three null hypotheses: () tree drought response does not differ between Scots pine and oak, () tree drought response of Scots pine and oak is not affected by stand composition (mixture versus monoculture) and () tree drought response of Scots pine and oak in mixtures and monocultures is not modified by tree size or site conditions. To test the hypotheses, we analysed increment cores of Scots pine and oak, sampled in mixed and monospecific stands, covering a wide range of site conditions. We investigated resistance (the ability to maintain growth levels during drought), recovery (the ability to restore a level of growth after drought) and resilience (the capacity to recover to pre-drought growth levels), involving site-specific drought events that occurred between 1976 and 2015. In monocultures, oak showed a higher resistance and resilience than Scots pine, while recovery was lower. Scots pine in mixed stands exhibited a higher resistance, but also a lower recovery compared with Scots pine in monocultures. Mixing increased the resistance and resilience of oak. Ecological factors such as tree size, site water supply and site fertility were found to have significant effects on the drought response. In the case of Scots pine, resistance was increased by tree size, while recovery was lowered. Resistance of oak increased with site water supply. The observed mixing effect on the tree drought response of Scots pine and oak was in some cases modified by the site conditions studied. Positive mixing effects in terms of resistance and resilience of oak increased with site water supply, while the opposite was found regarding recovery. In contrast, site fertility lessened the positive mixing effect on the resistance of Scots pine. We hypothesise that the observed positive mixing effects under drought mainly result from water- and/or light-related species interactions that improve resource availability and uptake according to temporal and spatial variations in environmental conditions.This work was supported by the European Union as part of the ERA-Net SUMFOREST project REFORM – Mixed species forest management. Lowering risk, increasing resilience (2816ERA02S, PCIN2017-026) and the Horizon 2020 research and innovation programme under the Marie Skłodowska-Curie grant agreement No 778322. All contributors thank their national funding institutions for supporting the establishment, mensuration and analysis of the studied triplets. The first author wants to thank the German Federal Ministry of Food and Agriculture (BMEL) for financial support through the Federal Office for Agriculture and Food (BLE) (grant number 2816ERA02S), as well as the Bayerische Staatsforsten (BaySF) and Landesbetrieb Forst Brandenburg for providing suitable research sites. Research on the Lithuanian triplets (LT 1, LT 2) was made possible by the national funding institution Research Council of Lithuania (LMTLT) (agreement number S-SUMFOREST-17-1). The French site FR 1 belongs to the OPTMix experimental site (https://optmix.irstea.fr), which is supported annually by Ecofor, Allenvi, and the French national research infrastructure ANAEE-F. A special thank is due to Peter Biber for supporting the statistical analysis

    Assessment of Forest Biomass and Carbon Stocks at Stand Level Using Site-Specific Primary Data to Support Forest Management

    Get PDF
    To quantify and map woody biomass (WB) and forest carbon (C) stocks, several models were developed. They differ in terms of scale of application, details related to the input data required and outputs provided. Local Authorities, such as Mountain Communities, can be supported in sustainable forest planning and management by providing specific models in which the reference unit is the same as the one reported in the Forest Management Plans (FMP), i.e. the forest stand. In the Lombardy Region (Northern Italy), a few studies were performed to assess WB and forest C stocks, and they were generally based on data coming from regional\u2014or national\u2014forest inventories and remote sensing, without taking into account data collected in the FMPs. For this study, the first version of the stand-level model \u201cWOody biomass and Carbon ASsessment\u201d (WOCAS) for WB and C stocks calculation was improved into a second version (WOCAS v2) and preliminary results about its first application to 2019 forest stands of Valle Camonica District (Lombardy Region) are presented. Since the model WOCAS uses the growing stock as the main driver for the calculation, it can be applied in any other forest area where the same input data are available

    Combating the effects of climatic change on forests by mitigation strategies

    Get PDF
    <p>Abstract</p> <p>Background</p> <p>Forests occur across diverse biomes, each of which shows a specific composition of plant communities associated with the particular climate regimes. Predicted future climate change will have impacts on the vulnerability and productivity of forests; in some regions higher temperatures will extend the growing season and thus improve forest productivity, while changed annual precipitation patterns may show disadvantageous effects in areas, where water availability is restricted. While adaptation of forests to predicted future climate scenarios has been intensively studied, less attention was paid to mitigation strategies such as the introduction of tree species well adapted to changing environmental conditions.</p> <p>Results</p> <p>We simulated the development of managed forest ecosystems in Germany for the time period between 2000 and 2100 under different forest management regimes and climate change scenarios. The management regimes reflect different rotation periods, harvesting intensities and species selection for reforestations. The climate change scenarios were taken from the IPCC's Special Report on Emission Scenarios (SRES). We used the scenarios A1B (rapid and successful economic development) and B1 (high level of environmental and social consciousness combined with a globally coherent approach to a more sustainable development). Our results indicate that the effects of different climate change scenarios on the future productivity and species composition of German forests are minor compared to the effects of forest management.</p> <p>Conclusions</p> <p>The inherent natural adaptive capacity of forest ecosystems to changing environmental conditions is limited by the long life time of trees. Planting of adapted species and forest management will reduce the impact of predicted future climate change on forests.</p
    corecore