458 research outputs found

    Deep GALEX Imaging of the HST/COSMOS Field: A First Look at the Morphology of z~0.7 Star-forming Galaxies

    Get PDF
    We present a study of the morphological nature of redshift z~0.7 star-forming galaxies using a combination of HST/ACS, GALEX and ground-based images of the COSMOS field. Our sample consists of 8,146 galaxies, 5,777 of which are detected in the GALEX near-ultraviolet band down to a limiting magnitude of 25.5 (AB). We make use of the UV to estimate star formation rates, correcting for the effect of dust using the UV-slope, and compute, from the ACS F814W images, the C,A,S,G,M20 morphological parameters for all objects in our sample. We observe a morphological bimodality in the galaxy population and show that it has a strong correspondence with the FUV - g color bimodality. We conclude that UV-optical color predominantly evolves concurrently with morphology. We observe many of the most star-forming galaxies to have morphologies approaching that of early-type galaxies, and interpret this as evidence that strong starburst events are linked to bulge growth and constitute a process through which galaxies can be brought from the blue to the red sequence while simultaneously modifying their morphology accordingly. We conclude that the red sequence has continued growing at z~<0.7. We also observe z~0.7 galaxies to have physical properties similar to that of local galaxies, except for higher star formation rates. Whence we infer that the dimming of star-forming galaxies is responsible for most of the evolution in the star formation rate density of the Universe since that redshift, although our data are also consistent with a mild number evolution. [abridged]Comment: 29 pages including 22 figures. Accepted for publication in ApJS COSMOS Special Issue. A copy of the paper with high resolution figures is available at http://www.astro.columbia.edu/~michel/galex_cosmos_paper.pd

    Crossing the Dripline to 11N Using Elastic Resonance Scattering

    Get PDF
    The level structure of the unbound nucleus 11N has been studied by 10C+p elastic resonance scattering in inverse geometry with the LISE3 spectrometer at GANIL, using a 10C beam with an energy of 9.0 MeV/u. An additional measurement was done at the A1200 spectrometer at MSU. The excitation function above the 10C+p threshold has been determined up to 5 MeV. A potential-model analysis revealed three resonance states at energies 1.27 (+0.18-0.05) MeV (Gamma=1.44 +-0.2 MeV), 2.01(+0.15-0.05) MeV, (Gamma=0.84 +-$0.2 MeV) and 3.75(+-0.05) MeV, (Gamma=0.60 +-0.05 MeV) with the spin-parity assignments I(pi) =1/2+, 1/2- and 5/2+, respectively. Hence, 11N is shown to have a ground state parity inversion completely analogous to its mirror partner, 11Be. A narrow resonance in the excitation function at 4.33 (+-0.05) MeV was also observed and assigned spin-parity 3/2-.Comment: 14 pages, 9 figures, twocolumn Accepted for publication in PR

    Lower NPAS3 expression during the later stages of abnormal lung development in rat congenital diaphragmatic hernia

    Get PDF
    Purpose Congenital diaphragmatic hernia (CDH) is characterized by a developmental defect in the diaphragm, pulmonary hypoplasia and pulmonary hypertension. NPAS3 is a PAS domain transcription factor regulating Drosophila tracheogenesis. NPAS3 null mice develop pulmonary hypoplasia in utero and die after birth due to respiratory failure. We aimed to evaluate NPAS3 expres- sion during normal and abnormal lung development due to CDH. Methods CDH was induced by administering 100 mg/ml nitrofen to time-pregnant dams on embryonic day (E) 9 of gestation. Lungs were isolated on E15, E18 and E21 and NPAS3 localization was determined by immunohisto- chemistry and quantified using Western blotting. Results We found that only E21 hypoplastic CDH lungs have reduced expression of NPAS3 in the terminal sac- cules. Western blotting confirmed the down-regulation of NPAS3 protein in the nitrofen-induced hypoplastic lungs. Conclusions We demonstrate for the first time that ni- trofen-induced hypoplastic CDH lungs have reduced NPAS3 expression in the terminal saccules during the later stages of abnormal lung development. Our findings suggest that NPAS3 is associated with pulmonary hypoplasia in CDH.Supported by the Children’s Hospital Research Institute of Manitoba; RK is the recipient of a Career Enhancement Award from the Canadian Child Health Clinician Scientist Program and a New Investigator Salary Award from the Canadian Institutes of Health Research, Manitoba Lung Association and the Children’s Hospital Research Institute

    Pyrazoleamide compounds are potent antimalarials that target Na+ homeostasis in intraerythrocytic Plasmodium falciparum

    Get PDF
    The quest for new antimalarial drugs, especially those with novel modes of action, is essential in the face of emerging drug-resistant parasites. Here we describe a new chemical class of molecules, pyrazoleamides, with potent activity against human malaria parasites and showing remarkably rapid parasite clearance in an in vivo model. Investigations involving pyrazoleamide-resistant parasites, whole-genome sequencing and gene transfers reveal that mutations in two proteins, a calcium-dependent protein kinase (PfCDPK5) and a P-type cation-ATPase (PfATP4), are necessary to impart full resistance to these compounds. A pyrazoleamide compound causes a rapid disruption of Na+ regulation in blood-stage Plasmodium falciparum parasites. Similar effect on Na+ homeostasis was recently reported for spiroindolones, which are antimalarials of a chemical class quite distinct from pyrazoleamides. Our results reveal that disruption of Na+ homeostasis in malaria parasites is a promising mode of antimalarial action mediated by at least two distinct chemical classes

    Cell Lineage Specific Distribution of H3K27 Trimethylation Accumulation in an In Vitro Model for Human Implantation

    Get PDF
    Female mammals inactivate one of their two X-chromosomes to compensate for the difference in gene-dosage with males that have just one X-chromosome. X-chromosome inactivation is initiated by the expression of the non-coding RNA Xist, which coats the X-chromosome in cis and triggers gene silencing. In early mouse development the paternal X-chromosome is initially inactivated in all cells of cleavage stage embryos (imprinted X-inactivation) followed by reactivation of the inactivated paternal X-chromosome exclusively in the epiblast precursors of blastocysts, resulting temporarily in the presence of two active X-chromosomes in this specific lineage. Shortly thereafter, epiblast cells randomly inactivate either the maternal or the paternal X-chromosome. XCI is accompanied by the accumulation of histone 3 lysine 27 trimethylation (H3K27me3) marks on the condensed X-chromosome. It is still poorly understood how XCI is regulated during early human development. Here we have investigated lineage development and the distribution of H3K27me3 foci in human embryos derived from an in-vitro model for human implantation. In this system, embryos are co-cultured on decidualized endometrial stromal cells up to day 8, which allows the culture period to be extended for an additional two days. We demonstrate that after the co-culture period, the inner cell masses have relatively high cell numbers and that the GATA4-positive hypoblast lineage and OCT4-positive epiblast cell lineage in these embryos have segregated. H3K27me3 foci were observed in ∼25% of the trophectoderm cells and in ∼7.5% of the hypoblast cells, but not in epiblast cells. In contrast with day 8 embryos derived from the co-cultures, foci of H3K27me3 were not observed in embryos at day 5 of development derived from regular IVF-cultures. These findings indicate that the dynamics of H3K27me3 accumulation on the X-chromosome in human development is regulated in a lineage specific fashion

    Investigation of Association between PFO Complicated by Cryptogenic Stroke and a Common Variant of the Cardiac Transcription Factor GATA4

    Get PDF
    Patent foramen ovale (PFO) is associated with clinical conditions including cryptogenic stroke, migraine and varicose veins. Data from studies in humans and mouse suggest that PFO and the secundum form of atrial septal defect (ASDII) exist in an anatomical continuum of septal dysmorphogenesis with a common genetic basis. Mutations in multiple members of the evolutionarily conserved cardiac transcription factor network, including GATA4, cause or predispose to ASDII and PFO. Here, we assessed whether the most prevalent variant of the GATA4 gene, S377G, was significantly associated with PFO or ASD. Our analysis of world indigenous populations showed that GATA4 S377G was largely Caucasian-specific, and so subjects were restricted to those of Caucasian descent. To select for patients with larger PFO, we limited our analysis to those with cryptogenic stroke in which PFO was a subsequent finding. In an initial study of Australian subjects, we observed a weak association between GATA4 S377G and PFO/Stroke relative to Caucasian controls in whom ASD and PFO had been excluded (ORβ€Š=β€Š2.16; pβ€Š=β€Š0.02). However, in a follow up study of German Caucasians no association was found with either PFO or ASD. Analysis of combined Australian and German data confirmed the lack of a significant association. Thus, the common GATA4 variant S377G is likely to be relatively benign in terms of its participation in CHD and PFO/Stroke

    Insertional mutation of the hairless locus on mouse Chromosome 14

    Full text link
    Crosses between heterozygous transgenic mice from line 5053 produced offspring with progressive irreversible hair loss beginning at day 10. With increasing age, the skin of these animals became thicker and plicated in appearance. Histological analysis revealed the complete absence of normal hair follicles and numerous intradermic cystic structures, which enlarged with time and became filled with keratinaceous material. Test crosses demonstrated that the affected animals are homozygous for the transgene insertion. The clinicla and histological phenotype of the new mutant closely resembles that of the rhino allele at the hairless locus on Chromosome (Chr) 14. Complementation tests and linkage analysis indicate that the transgene has interrupted the hairless locus. It has been demonstrated previously that mutation at the hr locus is accompanied by a variety of immune deficiencies. Many of the older affected transgenic mice developed an impetigo-like skin eruption which responded to antibiotic ointment and which may reflect impaired immune function. The transgenic allele, hr TgN5053Mm , will be useful for identification of the transcription unit of the hairless locus.Peer Reviewedhttp://deepblue.lib.umich.edu/bitstream/2027.42/47000/1/335_2004_Article_BF00360900.pd

    Dual Functions of ASCIZ in the DNA Base Damage Response and Pulmonary Organogenesis

    Get PDF
    Zn2+-finger proteins comprise one of the largest protein superfamilies with diverse biological functions. The ATM substrate Chk2-interacting Zn2+-finger protein (ASCIZ; also known as ATMIN and ZNF822) was originally linked to functions in the DNA base damage response and has also been proposed to be an essential cofactor of the ATM kinase. Here we show that absence of ASCIZ leads to p53-independent late-embryonic lethality in mice. Asciz-deficient primary fibroblasts exhibit increased sensitivity to DNA base damaging agents MMS and H2O2, but Asciz deletion or knock-down does not affect ATM levels and activation in mouse, chicken, or human cells. Unexpectedly, Asciz-deficient embryos also exhibit severe respiratory tract defects with complete pulmonary agenesis and severe tracheal atresia. Nkx2.1-expressing respiratory precursors are still specified in the absence of ASCIZ, but fail to segregate properly within the ventral foregut, and as a consequence lung buds never form and separation of the trachea from the oesophagus stalls early. Comparison of phenotypes suggests that ASCIZ functions between Wnt2-2b/ß-catenin and FGF10/FGF-receptor 2b signaling pathways in the mesodermal/endodermal crosstalk regulating early respiratory development. We also find that ASCIZ can activate expression of reporter genes via its SQ/TQ-cluster domain in vitro, suggesting that it may exert its developmental functions as a transcription factor. Altogether, the data indicate that, in addition to its role in the DNA base damage response, ASCIZ has separate developmental functions as an essential regulator of respiratory organogenesis
    • …
    corecore