363 research outputs found

    Serum Levels of Soluble IL-2R, CD4 and CD8 in Chronic Active HCV Positive Hepatitis

    Get PDF
    The aim of the present study was to compare serum levels of soluble forms of interleukin-2 receptor, CD4 and CD8, released by lymphocytes during activation ofthe immune system, in patients with histologically verified chronic active hepatitis associated to hepatitis C virus infection, with those in healthy subjects. Significantly higher levels of soluble IL-2R and soluble CD8 were found in patients with chronic active hepatitis compared with controls. In contrast no difference was found for soluble CD4 values in the two groups. No correlations were found for both sIL-2R and sCD8 and these two molecules with other parameters of liver function. These results indicate that in these patients there is a general activation of the immune system, but the lack of correlation with parameters of liver function strengthens the suggestion that this activation does not play a role in the pathogenesis of chronic type C hepatitis

    Atmospheric MUons from PArametric formulas: a fast GEnerator for neutrino telescopes (MUPAGE)

    Full text link
    Neutrino telescopes will open, in the next years, new opportunities in observational high energy astrophysics. For these experiments, atmospheric muons from primary cosmic ray interactions in the atmosphere play an important role, because they provide the most abundant source of events for calibration and test. On the other side, they represent the major background source. In this paper a fast Monte Carlo generator (called MUPAGE) of bundles of atmospheric muons for underwater/ice neutrino telescopes is presented. MUPAGE is based on parametric formulas [APP25(2006)1] obtained from a full Monte Carlo simulation of cosmic ray showers generating muons in bundle, which are propagated down to 5 km w.e. It produces the event kinematics on the surface of a user-defined virtual cylinder, surrounding the detector. The multiplicity of the muons in the bundle, the muon spatial distribution and energy spectrum are simulated according to a specific model of primary cosmic ray flux, with constraints from measurements of the muon flux with underground experiments. As an example of the application, the result of the generation of events on a cylindrical surface of 3 km^2 at a depth of 2450 m of water is presented.Comment: 20 pages, 4 figure

    High-Energy Neutrino Astronomy

    Full text link
    Kilometer-scale neutrino detectors such as IceCube are discovery instruments covering nuclear and particle physics, cosmology and astronomy. Examples of their multidisciplinary missions include the search for the particle nature of dark matter and for additional small dimensions of space. In the end, their conceptual design is very much anchored to the observational fact that Nature accelerates protons and photons to energies in excess of 102010^{20} and 101310^{13} eV, respectively. The cosmic ray connection sets the scale of cosmic neutrino fluxes. In this context, we discuss the first results of the completed AMANDA detector and the reach of its extension, IceCube. Similar experiments are under construction in the Mediterranean. Neutrino astronomy is also expanding in new directions with efforts to detect air showers, acoustic and radio signals initiated by super-EeV neutrinos.Comment: 9 pages, Latex2e, uses ws-procs975x65standard.sty (included), 4 postscript figures. To appear in Proceedings of Thinking, Observing, and Mining the Universe, Sorrento, Italy, September 200

    Contemporary presence of dynamical and statistical production of intermediate mass fragments in midperipheral 58^{58}Ni+58^{58}Ni collisions at 30 MeV/nucleon

    Full text link
    The 58Ni+58Ni^{58}Ni+^{58}Ni reaction at 30 MeV/nucleon has been experimentally investigated at the Superconducting Cyclotron of the INFN Laboratori Nazionali del Sud. In midperipheral collisions the production of massive fragments (4\leZ\le12), consistent with the statistical fragmentation of the projectile-like residue and the dynamical formation of a neck, joining projectile-like and target-like residues, has been observed. The fragments coming from these different processes differ both in charge distribution and isotopic composition. In particular it is shown that these mechanisms leading to fragment production act contemporarily inside the same event.Comment: 9 pages, minor correction

    Size and asymmetry of the reaction entrance channel: influence on the probability of neck production

    Full text link
    The results of experiments performed to investigate the Ni+Al, Ni+Ni, Ni+Ag reactions at 30 MeV/nucleon are presented. From the study of dissipative midperipheral collisions, it has been possible to detect events in which Intermediate Mass Fragments (IMF) production takes place. The decay of a quasi-projectile has been identified; its excitation energy leads to a multifragmentation totally described in terms of a statistical disassembly of a thermalized system (T\simeq4 MeV, E^*\simeq4 MeV/nucleon). Moreover, for the systems Ni+Ni, Ni+Ag, in the same nuclear reaction, a source with velocity intermediate between that of the quasi-projectile and that of the quasi-target, emitting IMF, is observed. The fragments produced by this source are more neutron rich than the average matter of the overall system, and have a charge distribution different, with respect to those statistically emitted from the quasi-projectile. The above features can be considered as a signature of the dynamical origin of the midvelocity emission. The results of this analysis show that IMF can be produced via different mechanisms simultaneously present within the same collision. Moreover, once fixed the characteristics of the quasi-projectile in the three considered reactions (in size, excitation energy and temperature), one observes that the probability of a partner IMF production via dynamical mechanism has a threshold (not present in the Ni+Al case) and increases with the size of the target nucleus.Comment: 16 pages, 7 figures, accepted for publication on Nuclear Physics

    Detection potential to point-like neutrino sources with the NEMO-km3 telescope

    Full text link
    The NEMO Collaboration is conducting an R&D activity towards the construction of a Mediterranean km3 neutrino telescope. In this work, we present the results of Monte Carlo simulation studies on the capability of the proposed NEMO telescope to detect and identify point-like sources of high energy muon neutrinos.Comment: To be published on BCN06 proceedings (Barcelona, July 4-7, 2006

    Silencing of caveolin-1 in fibroblasts as opposed to epithelial tumor cells results in increased tumor growth rate and chemoresistance in a human pancreatic cancer model

    Get PDF
    Caveolin‑1 (Cav‑1) expression has been shown to be associated with tumor growth and resistance to chemotherapy in pancreatic cancer. The primary aim of this study was to explore the significance of Cav‑1 expression in pancreatic cancer cells as compared to fibroblasts in relation to cancer cell proliferation and chemoresistance, both in vitro and in vivo, in an immunodeficient mouse model. We also aimed to evaluate the immunohistochemical expression of Cav‑1 in the epithelial and stromal component of pancreatic cancer tissue specimens. The immunohistochemical staining of poorly differentiated tissue sections revealed a strong and weak Cav‑1 expression in the epithelial tumor cells and stromal fibroblasts, respectively. Conversely, the well‑differentiated areas were characterized by a weak epithelial Cav‑1 expression. Cav‑1 downregulation in cancer cells resulted in an increased proliferation in vitro; however, it had no effect on chemoresistance and growth gain in vivo. By contrast, the decreased expression of Cav‑1 in fibroblasts resulted in a growth advantage and the chemoresistance of cancer cells when they were co‑injected into immunodeficient mice to develop mixed fibroblast/cancer cell xenografts. On the whole, the findings of this study suggest that the downregulation of Cav‑1 in fibroblasts is associated with an increased tumor proliferation rate in vivo and chemoresistance. Further studies are warranted to explore whether the targeting of Cav‑1 in the stroma may represent a novel therapeutic approach in pancreatic cancer
    corecore