4,133 research outputs found
Processing of targets in smooth or apparent motion along the vertical in the human brain: an fMRI study
Neural substrates for processing constant speed visual motion have been extensively studied. Less is known about the brain activity patterns when the target speed changes continuously, for instance under the influence of gravity. Using functional MRI (fMRI), here we compared brain responses to accelerating/decelerating targets with the responses to constant speed targets. The target could move along the vertical under gravity (1g), under reversed gravity (-1g), or at constant speed (0g). In the first experiment, subjects observed targets moving in smooth motion and responded to a GO signal delivered at a random time after target arrival. As expected, we found that the timing of the motor responses did not depend significantly on the specific motion law. Therefore brain activity in the contrast between different motion laws was not related to motor timing responses. Average BOLD signals were significantly greater for 1g targets than either 0g or -1g targets in a distributed network including bilateral insulae, left lingual gyrus, and brain stem. Moreover, in these regions, the mean activity decreased monotonically from 1g to 0g and to -1g. In the second experiment, subjects intercepted 1g, 0g, and -1g targets either in smooth motion (RM) or in long-range apparent motion (LAM). We found that the sites in the right insula and left lingual gyrus, which were selectively engaged by 1g targets in the first experiment, were also significantly more active during 1g trials than during -1g trials both in RM and LAM. The activity in 0g trials was again intermediate between that in 1g trials and that in -1g trials. Therefore in these regions the global activity modulation with the law of vertical motion appears to hold for both RM and LAM. Instead, a region in the inferior parietal lobule showed a preference for visual gravitational motion only in LAM but not RM
Recommended from our members
Towards a Multimodal Time-Based Empathy Prediction System
We describe our system for empathic emotion recognition. It is based on deep learning on multiple modalities in a late fusion architecture. We describe the modules of our system and discuss the evaluation results. Our code is also available for the research community
Aplicação da dispersão da matriz em fase sólida (DMFS) na determinação residual de acaricidas em sangue bovino
A metodologia desenvolvida, DMFS-GC/MS, mostrou-se sensível, precisa e reprodutível, para analisar resíduos dos acaricidas cipermetrina, clorfenvinfos e fipronil em plasma bovino
Development of large radii half-wave plates for CMB satellite missions
The successful European Space Agency (ESA) Planck mission has mapped the
Cosmic Microwave Background (CMB) temperature anisotropy with unprecedented
accuracy. However, Planck was not designed to detect the polarised components
of the CMB with comparable precision. The BICEP2 collaboration has recently
reported the first detection of the B-mode polarisation. ESA is funding the
development of critical enabling technologies associated with B-mode
polarisation detection, one of these being large diameter half-wave plates. We
compare different polarisation modulators and discuss their respective
trade-offs in terms of manufacturing, RF performance and thermo-mechanical
properties. We then select the most appropriate solution for future satellite
missions, optimized for the detection of B-modes.Comment: 16 page
Spherical orbit closures in simple projective spaces and their normalizations
Let G be a simply connected semisimple algebraic group over an algebraically
closed field k of characteristic 0 and let V be a rational simple G-module of
finite dimension. If G/H \subset P(V) is a spherical orbit and if X is its
closure, then we describe the orbits of X and those of its normalization. If
moreover the wonderful completion of G/H is strict, then we give necessary and
sufficient combinatorial conditions so that the normalization morphism is a
homeomorphism. Such conditions are trivially fulfilled if G is simply laced or
if H is a symmetric subgroup.Comment: 24 pages, LaTeX. v4: Final version, to appear in Transformation
Groups. Simplified some proofs and corrected minor mistakes, added
references. v3: major changes due to a mistake in previous version
The screening for depression and neurocognitive disorders in subjects newly diagnosed with HIV
Background
Inflammatory mediators may be relevant to explain the frequent comorbidity between depression, neurocognitive disorders and HIV. HIV induces activation of inflammatory mediators, mainly cytokines, that have been involved in the onset of depression and response to antidepressant treatment.
Aim
To identify recurring profiles of inflammatory biomarkers subtending depression, effectiveness of antidepressants and neurocognitive disorders among HIV-infected individuals.
Methods
All adult newly HIV-diagnosed out-patients attending HIV clinics in three towns of Northern Italy were screened, assessed for depression and studied immunologically and for neurocognitive disorders.
Results
Twenty-five patients have been enrolled so far: of these, 35% were positive to PHQ-9 screening, of which 6 were positive to the diagnostic assessment for depression. No neurocognitive disorders were found among the patients. As the project will develop, it is expected that frequency of depression, neurocognitive disorders and effective antidepressant treatment will be found to correlate to the profile of immune biomarkers. These findings might help to understand the etiology of depression in HIV, and specifically the role of inflammation and immunological changes
Detection of Zak phases and topological invariants in a chiral quantum walk of twisted photons
Topological insulators are fascinating states of matter exhibiting protected
edge states and robust quantized features in their bulk. Here, we propose and
validate experimentally a method to detect topological properties in the bulk
of one-dimensional chiral systems. We first introduce the mean chiral
displacement, and we show that it rapidly approaches a multiple of the Zak
phase in the long time limit. Then we measure the Zak phase in a photonic
quantum walk, by direct observation of the mean chiral displacement in its
bulk. Next, we measure the Zak phase in an alternative, inequivalent timeframe,
and combine the two windings to characterize the full phase diagram of this
Floquet system. Finally, we prove the robustness of the measure by introducing
dynamical disorder in the system. This detection method is extremely general,
as it can be applied to all one-dimensional platforms simulating static or
Floquet chiral systems.Comment: 10 pages, 7 color figures (incl. appendices) Close to the published
versio
On a common circle: natural scenes and Gestalt rules
To understand how the human visual system analyzes images, it is essential to
know the structure of the visual environment. In particular, natural images
display consistent statistical properties that distinguish them from random
luminance distributions. We have studied the geometric regularities of oriented
elements (edges or line segments) present in an ensemble of visual scenes,
asking how much information the presence of a segment in a particular location
of the visual scene carries about the presence of a second segment at different
relative positions and orientations. We observed strong long-range correlations
in the distribution of oriented segments that extend over the whole visual
field. We further show that a very simple geometric rule, cocircularity,
predicts the arrangement of segments in natural scenes, and that different
geometrical arrangements show relevant differences in their scaling properties.
Our results show similarities to geometric features of previous physiological
and psychophysical studies. We discuss the implications of these findings for
theories of early vision.Comment: 3 figures, 2 large figures not include
- …
