Let G be a simply connected semisimple algebraic group over an algebraically
closed field k of characteristic 0 and let V be a rational simple G-module of
finite dimension. If G/H \subset P(V) is a spherical orbit and if X is its
closure, then we describe the orbits of X and those of its normalization. If
moreover the wonderful completion of G/H is strict, then we give necessary and
sufficient combinatorial conditions so that the normalization morphism is a
homeomorphism. Such conditions are trivially fulfilled if G is simply laced or
if H is a symmetric subgroup.Comment: 24 pages, LaTeX. v4: Final version, to appear in Transformation
Groups. Simplified some proofs and corrected minor mistakes, added
references. v3: major changes due to a mistake in previous version