396 research outputs found

    Total electron scattering cross sections from thiophene for the (1-300 eV) impact energy range

    Get PDF
    Experimental electron scattering cross sections for thiophene in the impact energy range from 1 to 300 eV have been measured with a magnetically confined electron transmission-beam apparatus. Random uncertainty limits have been estimated to be less than 5%, and systematic errors derived from acceptance angle limitations have also been identified and evaluated. Experimental values are compared with our previous low energy (1-15 eV) R-matrix and intermediate/high energy (15-300 eV) IAM-SCAR+I calculations finding reasonable agreement, within the combined uncertainty limits. Some of the low energy shape and core-excited resonances predicted by previous calculations are experimentally confirmed in this study

    Total cross section measurements for electron scattering from dichloromethane

    Get PDF
    Using our magnetically confined electron transmission apparatus, we report the results of total cross sections (TCSs) for electron scattering from dichloromethane (CH2C12). The energy range of this study is 1-300 eV. Wherever possible, the present data are compared to earlier measured TCSs of Wan et al. [J. Chem. Phys. 94, 1865 (1991)] and Karwasz et al. [Phys. Rev. A 59, 1341 (1999)] and to the corresponding theoretical independent atom model with screening corrected additivity rule and interference term (IAM-SCAR+I) results of Krupa et al. [Phys. Rev. A 97, 042702 (2018)] and a spherical complex optical potential formulation calculation of Naghma et al. [J. Electron Spectrosc. Relat. Phenom. 193, 48 (2014)]. Within their respective uncertainties, the present TCS and those of Karwasz et al. are found to be in very good agreement over their common energy range. However, agreement with the results of Wan et al. is quite poor. The importance of the experimentally inherent `missing angle' effect (see later) on the measured TCS is investigated and found to be significant at the lower energies studied. Indeed, when this effect is accounted for, agreement between our measured TCSs and the corrected IAM-SCAR+I+rotations calculation results are, for energies above about 3 eV, in good accord (to better than 8%). Finally, we observe two o-* shape resonances, consistent with the earlier electron transmission spectroscopy results of Burrow et al. [J. Chem. Phys. 77, 2699 (1982)], at about 2.8 eV and 4.4 eV incident electron energy, in our measured TCS. Published by AIP Publishing

    Local delivery of optimized nanobodies targeting the PD-1/PD-L1 axis with a self-amplifying RNA viral vector induces potent antitumor responses

    Get PDF
    Despite the success of immune checkpoint blockade for cancer therapy, many patients do not respond adequately. We aimed to improve this therapy by optimizing both the antibodies and their delivery route, using small monodomain antibodies (nanobodies) delivered locally with a self-amplifying RNA (saRNA) vector based on Semliki Forest virus (SFV). We generated nanobodies against PD-1 and PD-L1 able to inhibit both human and mouse interactions. Incorporation of a dimerization domain reduced PD-1/PD-L1 IC50 by 8- and 40-fold for antiPD-L1 and anti-PD-1 nanobodies, respectively. SFV viral particles expressing dimeric nanobodies showed a potent antitumor response in the MC38 model, resulting in >50% complete regressions, and showed better therapeutic efficacy compared to vectors expressing conventional antibodies. These effects were also observed in the B16 melanoma model. Although a short-term expression of nanobodies was observed due to the cytopathic nature of the saRNA vector, it was enough to generate a strong proinflammatory response in tumors, increasing infiltration of NK and CD8+ T cells. Delivery of the SFV vector expressing dimeric nanobodies by local plasmid electroporation, which could be more easily translated to the clinic, also showed a potent antitumor effect

    Radiation tests on commercial instrumentation amplifiers, analog switches & DAC's

    Get PDF
    A study of several commercial instrumentation amplifiers (INA110, INA111, INA114, INA116, INA118 & INA121) under neutron and vestigial gamma radiation was done. Some parameters (Gain, input offset voltage, input bias currents) were measured on-line and bandwidth, and slew rate were determined before and after radiation. The results of the testing of some voltage references REF102 and ADR290GR and the DG412 analog switch are shown. Finally, different digital-to-analog converters were tested under radiation

    Use of life cycle assessment methodology in the analysis of ecological footprint assessment results to evaluate the environmental performance of universities

    Full text link
    The assessment of the environmental performance of an organization is an essential part of the decision making process of an Environmental Management System. Having robust indicators enables a reliable assessment. The Ecological Footprint Assessment is used in different types of organizations, including universities. Its ability to clearly communicate over-consumption by using a land-base unit is an advantage when involving the university community in achieving better environmental performance. However, its lack of standardization makes it difficult to use as an indicator. It is believed that Life Cycle Assessment offers a framework with which to standardize the Ecological Footprint Assessment. In this paper, an Ecological Footprint Assessment considering Life Cycle Assessment methodology is developed as a case study for Universitat Politecnica de Valencia. Findings regarding the critical decisions of the methodology are compared with 23 Ecological Footprint Assessments of universities using a Life Cycle Assessment framework. Only 26% of the studies analyzed reference the Life Cycle Assessment methodology. Critical decisions such as defining a Functional Unit were relevant but not standardized, while the definition of the product system was the most standardized and homogeneous decision. The difficulty of gathering information when Environmental Management Systems are not available makes the Ecological Footprint Assessment a weak indicator. Nevertheless, results show that Life Cycle Assessment can guide an Ecological Footprint Assessment methodology where comparability and reliability is possible. (C) 2016 Elsevier Ltd. All rights reserved.Lo-Iacono-Ferreira, VG.; Torregrosa López, JI.; Capuz-Rizo, SF. (2016). Use of life cycle assessment methodology in the analysis of ecological footprint assessment results to evaluate the environmental performance of universities. Journal of Cleaner Production. 133:45-53. doi:10.1016/j.jclepro.2016.05.046S455313

    Highlights from the Pierre Auger Observatory

    Full text link
    The Pierre Auger Observatory is the world's largest cosmic ray observatory. Our current exposure reaches nearly 40,000 km2^2 str and provides us with an unprecedented quality data set. The performance and stability of the detectors and their enhancements are described. Data analyses have led to a number of major breakthroughs. Among these we discuss the energy spectrum and the searches for large-scale anisotropies. We present analyses of our Xmax_{max} data and show how it can be interpreted in terms of mass composition. We also describe some new analyses that extract mass sensitive parameters from the 100% duty cycle SD data. A coherent interpretation of all these recent results opens new directions. The consequences regarding the cosmic ray composition and the properties of UHECR sources are briefly discussed.Comment: 9 pages, 12 figures, talk given at the 33rd International Cosmic Ray Conference, Rio de Janeiro 201

    A search for point sources of EeV photons

    Full text link
    Measurements of air showers made using the hybrid technique developed with the fluorescence and surface detectors of the Pierre Auger Observatory allow a sensitive search for point sources of EeV photons anywhere in the exposed sky. A multivariate analysis reduces the background of hadronic cosmic rays. The search is sensitive to a declination band from -85{\deg} to +20{\deg}, in an energy range from 10^17.3 eV to 10^18.5 eV. No photon point source has been detected. An upper limit on the photon flux has been derived for every direction. The mean value of the energy flux limit that results from this, assuming a photon spectral index of -2, is 0.06 eV cm^-2 s^-1, and no celestial direction exceeds 0.25 eV cm^-2 s^-1. These upper limits constrain scenarios in which EeV cosmic ray protons are emitted by non-transient sources in the Galaxy.Comment: 28 pages, 10 figures, accepted for publication in The Astrophysical Journa

    Reconstruction of inclined air showers detected with the Pierre Auger Observatory

    Full text link
    We describe the method devised to reconstruct inclined cosmic-ray air showers with zenith angles greater than 6060^\circ detected with the surface array of the Pierre Auger Observatory. The measured signals at the ground level are fitted to muon density distributions predicted with atmospheric cascade models to obtain the relative shower size as an overall normalization parameter. The method is evaluated using simulated showers to test its performance. The energy of the cosmic rays is calibrated using a sub-sample of events reconstructed with both the fluorescence and surface array techniques. The reconstruction method described here provides the basis of complementary analyses including an independent measurement of the energy spectrum of ultra-high energy cosmic rays using very inclined events collected by the Pierre Auger Observatory.Comment: 27 pages, 19 figures, accepted for publication in Journal of Cosmology and Astroparticle Physics (JCAP
    corecore