1,493 research outputs found

    A schematic model for QCD at finite temperature

    Get PDF
    The simplest version of a class of toy models for QCD is presented. It is a Lipkin-type model, for the quark-antiquark sector, and, for the gluon sector, gluon pairs with spin zero are treated as elementary bosons. The model restricts to mesons with spin zero and to few baryonic states. The corresponding energy spectrum is discussed. We show that ground state correlations are essential to describe physical properties of the spectrum at low energies. Phase transitions are described in an effective manner, by using coherent states. The appearance of a Goldstone boson for large values of the interaction strength is discussed, as related to a collective state. The formalism is extended to consider finite temperatures. The partition function is calculated, in an approximate way, showing the convenience of the use of coherent states. The energy density, heat capacity and transitions from the hadronic phase to the quark-gluon plasma are calculated.Comment: 33 pages, 11 figure

    Cosmic rays from Leptonic Dark Matter

    Full text link
    If dark matter possesses a lepton number, it is natural to expect the dark-matter annihilation and/or decay mainly produces the standard model leptons, while negligible amount of the antiproton is produced. To illustrate such a simple idea, we consider a scenario that a right-handed sneutrino dark matter decays into the standard model particles through tiny R-parity violating interactions. Interestingly enough, charged leptons as well as neutrinos are directly produced, and they can lead to a sharp peak in the predicted positron fraction. Moreover, the decay of the right-handed sneutrino also generates diffuse continuum gamma rays which may account for the excess observed by EGRET, while the primary antiproton flux can be suppressed. Those predictions on the cosmic-ray fluxes of the positrons, gamma rays and antiprotons will be tested by the PAMELA and FGST observatories.Comment: 21 pages, 4 figures, 2 tables, updated plots including PAMELA dat

    Pair Fluctuations in Ultra-small Fermi Systems within Self-Consistent RPA at Finite Temperature

    Get PDF
    A self-consistent version of the Thermal Random Phase Approximation (TSCRPA) is developed within the Matsubara Green's Function (GF) formalism. The TSCRPA is applied to the many level pairing model. The normal phase of the system is considered. The TSCRPA results are compared with the exact ones calculated for the Grand Canonical Ensemble. Advantages of the TSCRPA over the Thermal Mean Field Approximation (TMFA) and the standard Thermal Random Phase Approximation (TRPA) are demonstrated. Results for correlation functions, excitation energies, single particle level densities, etc., as a function of temperature are presented.Comment: 22 pages, 13 figers and 3 table

    Developmental Exposure to Low-Dose PBDE-99: Effects on Male Fertility and Neurobehavior in Rat Offspring

    Get PDF
    In utero exposure to a single low dose of 2,2′,4,4′,5-pentabromodiphenyl ether (PBDE-99) disrupts neurobehavioral development and causes permanent effects on the rat male reproductive system apparent in adulthood. PBDEs, a class of flame retardants, are widely used in every sector of modern life to prevent fire. They are persistent in the environment, and increasing levels of PBDEs have been found in biota and human breast milk. In the present study we assessed the effects of developmental exposure to one of the most persistent PBDE congeners (PBDE-99) on juvenile basal motor activity levels and adult male reproductive health. Wistar rat dams were treated by gavage on gestation day 6 with a single low dose of 60 or 300 μg PBDE-99/kg body weight (bw). In offspring, basal locomotor activity was evaluated on postnatal days 36 and 71, and reproductive performance was assessed in males at adulthood. The exposure to low-dose PBDE-99 during development caused hyperactivity in the offspring at both time points and permanently impaired spermatogenesis by the means of reduced sperm and spermatid counts. The doses used in this study (60 and 300 μg/kg bw) are relevant to human exposure levels, being approximately 6 and 29 times, respectively, higher than the highest level reported in human breast adipose tissue. This is the lowest dose of PBDE reported to date to have an in vivo toxic effect in rodents and supports the premise that low-dose studies should be encouraged for hazard identification of persistent environmental pollutants

    Optical pumping NMR in the compensated semiconductor InP:Fe

    Full text link
    The optical pumping NMR effect in the compensated semiconductor InP:Fe has been investigated in terms of the dependences of photon energy (E_p), helicity (sigma+-), and exposure time (tau_L) of infrared lights. The {31}P and {115}In signal enhancements show large sigma+- asymmetries and anomalous oscillations as a function of E_p. We find that (i) the oscillation period as a function of E_p is similar for {31}P and {115}In and almost field independent in spite of significant reduction of the enhancement in higher fields. (ii) A characteristic time for buildup of the {31}P polarization under the light exposure shows strong E_p-dependence, but is almost independent of sigma+-. (iii) The buildup times for {31}P and {115}In are of the same order (10^3 s), although the spin-lattice relaxation times (T_1) are different by more than three orders of magnitude between them. The results are discussed in terms of (1) discrete energy spectra due to donor-acceptor pairs (DAPs) in compensated semiconductors, and (2) interplay between {31}P and dipolar ordered indium nuclei, which are optically induced.Comment: 8 pages, 6 figures, submitted to Physical Review

    F-term Uplift in Heterotic M-theory

    Full text link
    We investigate the viability of F-term uplift in heterotic M-theory. With this aim we explore a natural ingredient of heterotic compactifications, namely vector bundle moduli. It is shown that it is generically possible to obtain stable de Sitter vacua with broken supersymmetry provided the little Kahler potential and the prefactors of the non-perturbative superpotential are suitably tuned. An additional requirement is the existence of non-trivial gauge instantons both at the visible and hidden sectors. This is illustrated with analytical and numerical examples.Comment: 21 pages, 1 figure, references added, typos correcte

    Spectral quantification of nonlinear behaviour of the nearshore seabed and correlations with potential forcings at Duck, N.C., U.S.A

    Get PDF
    Local bathymetric quasi-periodic patterns of oscillation are identified from monthly profile surveys taken at two shore-perpendicular transects at the USACE field research facility in Duck, North Carolina, USA, spanning 24.5 years and covering the swash and surf zones. The chosen transects are the two furthest (north and south) from the pier located at the study site. Research at Duck has traditionally focused on one or more of these transects as the effects of the pier are least at these locations. The patterns are identified using singular spectrum analysis (SSA). Possible correlations with potential forcing mechanisms are discussed by 1) doing an SSA with same parameter settings to independently identify the quasi-periodic cycles embedded within three potentially linked sequences: monthly wave heights (MWH), monthly mean water levels (MWL) and the large scale atmospheric index known as the North Atlantic Oscillation (NAO) and 2) comparing the patterns within MWH, MWL and NAO to the local bathymetric patterns. The results agree well with previous patterns identified using wavelets and confirm the highly nonstationary behaviour of beach levels at Duck; the discussion of potential correlations with hydrodynamic and atmospheric phenomena is a new contribution. The study is then extended to all measured bathymetric profiles, covering an area of 1100m (alongshore) by 440m (cross-shore), to 1) analyse linear correlations between the bathymetry and the potential forcings using multivariate empirical orthogonal functions (MEOF) and linear correlation analysis and 2) identify which collective quasi-periodic bathymetric patterns are correlated with those within MWH, MWL or NAO, based on a (nonlinear) multichannel singular spectrum analysis (MSSA). (...continued in submitted paper)Comment: 50 pages, 3 tables, 8 figure

    Flavor Structure in F-theory Compactifications

    Full text link
    F-theory is one of frameworks in string theory where supersymmetric grand unification is accommodated, and all the Yukawa couplings and Majorana masses of right-handed neutrinos are generated. Yukawa couplings of charged fermions are generated at codimension-3 singularities, and a contribution from a given singularity point is known to be approximately rank 1. Thus, the approximate rank of Yukawa matrices in low-energy effective theory of generic F-theory compactifications are minimum of either the number of generations N_gen = 3 or the number of singularity points of certain types. If there is a geometry with only one E_6 type point and one D_6 type point over the entire 7-brane for SU(5) gauge fields, F-theory compactified on such a geometry would reproduce approximately rank-1 Yukawa matrices in the real world. We found, however, that there is no such geometry. Thus, it is a problem how to generate hierarchical Yukawa eigenvalues in F-theory compactifications. A solution in the literature so far is to take an appropriate factorization limit. In this article, we propose an alternative solution to the hierarchical structure problem (which requires to tune some parameters) by studying how zero mode wavefunctions depend on complex structure moduli. In this solution, the N_gen x N_gen CKM matrix is predicted to have only N_gen entries of order unity without an extra tuning of parameters, and the lepton flavor anarchy is predicted for the lepton mixing matrix. We also obtained a precise description of zero mode wavefunctions near the E_6 type singularity points, where the up-type Yukawa couplings are generated.Comment: 148 page

    Quantile causality and dependence between crude oil and precious metal prices

    Get PDF
    Abstract: This paper examines long‐run dependence and causality between oil and precious metal (gold, silver, platinum, palladium, steel, and titanium) prices across quantiles by exploiting their time series properties with the help of novel econometric techniques. The empirical results for the period 1990–2019 indicate that oil and metal prices are nonstationary across different quantiles and that cointegration patterns differ widely across quantiles. Causality running from oil to metal prices is quantile‐dependent and differs according to the metal, whereas upward and downward movements in metal prices have no causal effect on oil prices. These results have implications for investors and policymakers in terms of portfolio and risk management decisions
    corecore