89 research outputs found

    Green consumer markets in the fight against climate change

    Get PDF
    Climate change has become one of the greatest threats to environmental security, as attested by the growing frequency of severe flooding and storms, extreme temperatures and droughts. Accordingly, the European Union’s (EU) 6th Environment Action Programme (2010) lists tackling climate change as its first priority. A key aim of the EU has been to cut CO2 emissions, a major factor in climate change, by 8% until 2012 and 20% until 2020. The European Commission has proposed the encouragement of private consumer market for green products and services as one of several solutions to this problem. However, existing research suggests that the market share of these products has been only 3%, although 30% of individuals favour environmental and ethical goods. This article uses Public Goods Theory to explain why the contribution of the green consumer market to fighting climate change has been and possibly may remain limited without further public intervention

    Decadal oxygen change in the eastern tropical North Atlantic

    Get PDF
    Repeat shipboard and multi-year moored observations obtained in the oxygen minimum zone (OMZ) of the eastern tropical North Atlantic (ETNA) were used to study the decadal change in oxygen for the period 2006–2015. Along 23° W between 6 and 14° N, oxygen decreased with a rate of −5.9 ± 3.5 ”mol kg−1 decade−1 within the depth covering the deep oxycline (200–400 m), while below the OMZ core (400–1000 m) oxygen increased by 4.0 ± 1.6 ”mol kg−1 decade−1 on average. The inclusion of these decadal oxygen trends in the recently estimated oxygen budget for the ETNA OMZ suggests a weakened ventilation of the upper 400 m, whereas the ventilation strengthened homogeneously below 400 m. The changed ventilation resulted in a shoaling of the ETNA OMZ of −0.03 ± 0.02 kg m−3 decade−1 in density space, which was only partly compensated by a deepening of isopycnal surfaces, thus pointing to a shoaling of the OMZ in depth space as well (−22 ± 17 m decade−1). Based on the improved oxygen budget, possible causes for the changed ventilation are analyzed and discussed. Largely ruling out other ventilation processes, the zonal advective oxygen supply stands out as the most probable budget term responsible for the decadal oxygen changes

    Epistemic policy networks in the European Union’s CBRN risk mitigation policy

    No full text
    This paper offers insights into an innovative and currently flagship approach of the European Union (EU) to the mitigation of chemical, biological, radiological, and nuclear (CBRN) risks. Building on its long-time experience in the CBRN field, the EU has incorporated methods familiar to the students of international security governance: it is establishing regional networks of experts and expertise. CBRN Centers of Excellence, as they are officially called, aim to contribute to the security and safety culture in different parts of Africa, the Middle East, South East Asia, and South East Europe, in the broadly construed CBRN area. These regional networks represent a modern form of security cooperation, which can be conceptualized as an epistemic policy networks approach. It offers flexibility to the participating states, which have different incentives to get involved. At the same, however, the paper identifies potential limitations and challenges of epistemic policy networks in this form

    Characterizing, modelling and understanding the climate variability of the deep water formation in the North-Western Mediterranean Sea

    Get PDF
    Observing, modelling and understanding the climate-scale variability of the deep water formation (DWF) in the North-Western Mediterranean Sea remains today very challenging. In this study, we first characterize the interannual variability of this phenomenon by a thorough reanalysis of observations in order to establish reference time series. These quantitative indicators include 31 observed years for the yearly maximum mixed layer depth over the period 1980–2013 and a detailed multi-indicator description of the period 2007–2013. Then a 1980–2013 hindcast simulation is performed with a fully-coupled regional climate system model including the high-resolution representation of the regional atmosphere, ocean, land-surface and rivers. The simulation reproduces quantitatively well the mean behaviour and the large interannual variability of the DWF phenomenon. The model shows convection deeper than 1000 m in 2/3 of the modelled winters, a mean DWF rate equal to 0.35 Sv with maximum values of 1.7 (resp. 1.6) Sv in 2013 (resp. 2005). Using the model results, the winter-integrated buoyancy loss over the Gulf of Lions is identified as the primary driving factor of the DWF interannual variability and explains, alone, around 50 % of its variance. It is itself explained by the occurrence of few stormy days during winter. At daily scale, the Atlantic ridge weather regime is identified as favourable to strong buoyancy losses and therefore DWF, whereas the positive phase of the North Atlantic oscillation is unfavourable. The driving role of the vertical stratification in autumn, a measure of the water column inhibition to mixing, has also been analyzed. Combining both driving factors allows to explain more than 70 % of the interannual variance of the phenomenon and in particular the occurrence of the five strongest convective years of the model (1981, 1999, 2005, 2009, 2013). The model simulates qualitatively well the trends in the deep waters (warming, saltening, increase in the dense water volume, increase in the bottom water density) despite an underestimation of the salinity and density trends. These deep trends come from a heat and salt accumulation during the 1980s and the 1990s in the surface and intermediate layers of the Gulf of Lions before being transferred stepwise towards the deep layers when very convective years occur in 1999 and later. The salinity increase in the near Atlantic Ocean surface layers seems to be the external forcing that finally leads to these deep trends. In the future, our results may allow to better understand the behaviour of the DWF phenomenon in Mediterranean Sea simulations in hindcast, forecast, reanalysis or future climate change scenario modes. The robustness of the obtained results must be however confirmed in multi-model studies

    Open-ocean deep convection explored in the Mediterranean

    Get PDF
    Open-ocean deep convection is a littleunderstood process occurring in winter in remote areas under hostile observation conditions, for example, in the Labrador and Greenland Seas and near the Antarctic continent. Deep convection is a crucial link in the “Great Ocean Conveyor Belt” [Broecker, 1991], transforming poleward flowing warm surface waters through atmosphere-oceaninteraction into cold equatorward flowing water masses. Understanding its physics, interannual variations, and role in the global thermohaline circulation is an important objective of climate change research. In convection regions, drastic changes in water mass properties and distribution occur on scales of 10–100 km. These changes occur quickly and are difficult to observe with conventional oceanographic techniques. Apart from observing the development of the deep-mixed patch of homogeneous water itself, processes of interest are convective plumes on scales <1 km and vertical velocities of several cm s−1 [Schott et al., 1994] that quickly mix water masses vertically, and instability processes at the rim of the convection region that expedite horizontal exchanges of convected and background water masses [e.g., Gascard, 1978]

    The economic case for prioritizing governance over financial incentives in REDD+

    Get PDF
    This article contributes to the ongoing debate on the role of public policies and financial incentives in Reducing Emissions from Deforestation and forest Degradation (REDD+). It argues that the subordination of policies to results-based payments for emission reductions causes severe economic inefficiencies affecting the opportunity cost, transaction cost and economic rent of the programme. Such problems can be addressed by establishing sound procedural, land and financial governance at the national level, before REDD+ economic incentives are delivered at scale. Consideration is given to each governance dimension, the entry points for policy intervention and the impact on costs. International support must consider the financial and political cost of governance reforms, and use a pay-for-results ethos based on output and outcome indicators. This can be done in the readiness process but only if the latter’s legal force, scope, magnitude and time horizon are adequately reconsidered. In sum, the paper provides ammunition for the institutionalist argument that UNFCCC Parties must prioritise governance reform between now and the entry into force of the new climate agreement in 2020, and specific recommendations about how this can be done: only by doing so will they create the basis for the programme’s financial sustainability

    Do submesoscale frontal processes ventilate the oxygen minimum zone off Peru?

    Get PDF
    The Peruvian upwelling system encompasses the most intense and shallowest oxygen minimum zone (OMZ) in the ocean. This system shows pronounced submesoscale activity like filaments and fronts. We carried out glider-based observations off Peru during austral summer 2013 to investigate whether submesoscale frontal processes ventilate the Peruvian OMZ. We present observational evidence for the subduction of highly oxygenated surface water in a submesoscale cold filament. The subduction event ventilates the oxycline but does not reach OMZ core waters. In a regional submesoscale-permitting model we study the pathways of newly upwelled water. About 50% of upwelled virtual floats are subducted below the mixed layer within 5 days emphasizing a hitherto unrecognized importance of subduction for the ventilation of the Peruvian oxycline
    • 

    corecore