41 research outputs found
Physical activity to improve cognition in older adults: can physical activity programs enriched with cognitive challenges enhance the effects? A systematic review and meta-analysis
: EPHPP quality rating scores (DOCX 38 kb
Diurnal Rhythms in Neurexins Transcripts and Inhibitory/Excitatory Synapse Scaffold Proteins in the Biological Clock
The neurexin genes (NRXN1/2/3) encode two families (α and β) of highly polymorphic presynaptic proteins that are involved in excitatory/inhibitory synaptic balance. Recent studies indicate that neuronal activation and memory formation affect NRXN1/2/3α expression and alternative splicing at splice sites 3 and 4 (SS#3/SS#4). Neurons in the biological clock residing in the suprachiasmatic nuclei of the hypothalamus (SCN) act as self-sustained oscillators, generating rhythms in gene expression and electrical activity, to entrain circadian bodily rhythms to the 24 hours day/night cycles. Cell autonomous oscillations in NRXN1/2/3α expression and SS#3/SS#4 exons splicing and their links to rhythms in excitatory/inhibitory synaptic balance in the circadian clock were explored. NRXN1/2/3α expression and SS#3/SS#4 splicing, levels of neurexin-2α and the synaptic scaffolding proteins PSD-95 and gephyrin (representing excitatory and inhibitory synapses, respectively) were studied in mRNA and protein extracts obtained from SCN of C3H/J mice at different times of the 24 hours day/night cycle. Further studies explored the circadian oscillations in these components and causality relationships in immortalized rat SCN2.2 cells. Diurnal rhythms in mNRXN1α and mNRXN2α transcription, SS#3/SS#4 exon-inclusion and PSD-95 gephyrin and neurexin-2α levels were found in the SCN in vivo. No such rhythms were found with mNRXN3α. SCN2.2 cells also exhibited autonomous circadian rhythms in rNRXN1/2 expression SS#3/SS#4 exon inclusion and PSD-95, gephyrin and neurexin-2α levels. rNRXN3α and rNRXN1/2β were not expressed. Causal relationships were demonstrated, by use of specific siRNAs, between rNRXN2α SS#3 exon included transcripts and gephyrin levels in the SCN2.2 cells. These results show for the first time dynamic, cell autonomous, diurnal rhythms in expression and splicing of NRXN1/2 and subsequent effects on the expression of neurexin-2α and postsynaptic scaffolding proteins in SCN across the 24-h cycle. NRXNs gene transcripts may have a role in coupling the circadian clock to diurnal rhythms in excitatory/inhibitory synaptic balance
Presenilin/γ-Secretase Regulates Neurexin Processing at Synapses
Neurexins are a large family of neuronal plasma membrane proteins, which function as trans-synaptic receptors during synaptic differentiation. The binding of presynaptic neurexins to postsynaptic partners, such as neuroligins, has been proposed to participate in a signaling pathway that regulates synapse formation/stabilization. The identification of mutations in neurexin genes associated with autism and mental retardation suggests that dysfunction of neurexins may underlie synaptic defects associated with brain disorders. However, the mechanisms that regulate neurexin function at synapses are still unclear. Here, we show that neurexins are proteolytically processed by presenilins (PS), the catalytic components of the γ-secretase complex that mediates the intramembraneous cleavage of several type I membrane proteins. Inhibition of PS/γ-secretase by using pharmacological and genetic approaches induces a drastic accumulation of neurexin C-terminal fragments (CTFs) in cultured rat hippocampal neurons and mouse brain. Neurexin-CTFs accumulate mainly at the presynaptic terminals of PS conditional double knockout (PS cDKO) mice lacking both PS genes in glutamatergic neurons of the forebrain. The fact that loss of PS function enhances neurexin accumulation at glutamatergic terminals mediated by neuroligin-1 suggests that PS regulate the processing of neurexins at glutamatergic synapses. Interestingly, presenilin 1 (PS1) is recruited to glutamatergic terminals mediated by neuroligin-1, thus concentrating PS1 at terminals containing β-neurexins. Furthermore, familial Alzheimer's disease (FAD)-linked PS1 mutations differentially affect β-neurexin-1 processing. Expression of PS1 M146L and PS1 H163R mutants in PS−/− cells rescues the processing of β-neurexin-1, whereas PS1 C410Y and PS1 ΔE9 fail to rescue the processing defect. These results suggest that PS regulate the synaptic function and processing of neurexins at glutamatergic synapses, and that impaired neurexin processing by PS may play a role in FAD
Dancing in time: feasibility and acceptability of a contemporary dance programme to modify risk factors for falling in community dwelling older adults
Background: Falls are a common cause of injury in older adults, with the prevention of falls being a priority for public health departments around the world. This study investigated the feasibility, and impact of an 8 week contemporary dance programme on modifiable physical (physical activity status, mobility, sedentary behaviour patterns) and psychosocial (depressive state, fear of falling) risk factors for falls. Methods: An uncontrolled ‘pre-post’ intervention design was used. Three groups of older (60 yrs.+) adults were recruited from local community groups to participate in a 3 separate, 8 week dance programmes. Each programme comprised two, 90 min dance classes per week. Quantitative measures of physical activity, sedentary behaviour, depression, mobility and fear of falling were measured at baseline (T1) and after 8 weeks of dance (T2). Weekly attendance was noted, and post-study qualitative work was conducted with participants in 3 separate focus groups. A combined thematic analysis of these data was conducted. Results: Of the 38 (Mean Age = 77.3 ± 8.4 yrs., 37 females) who attended the dance sessions, 22 (21 females; 1 male; mean age = 74.8, ±8.44) consented to be part of the study. Mean attendance was 14.6 (±2.6) sessions, and mean adherence was 84.3% (±17). Significant increases in moderate and vigorous physical activity were noted, with a significant decrease in sitting time over the weekdays (p < 0.05). Statistically significant decreases in the mean Geriatric Depression Scale (p < 0.05) and fear of falling (p < 0.005) score were noted, and the time taken to complete the TUG test decreased significantly from 10.1 s to 7.7 s over the 8 weeks (p < 0.005). Themes from the focus groups included the dance programme as a means of being active, health Benefits, and dance-related barriers and facilitators. Conclusions: The recruitment of older adults, good adherence and favourability across all three sites indicate that a dance programme is feasible as an intervention, but this may be limited to females only. Contemporary dance has the potential to positively affect the physical activity, sitting behaviour, falls related efficacy, mobility and incidence of depression in older females which could reduce their incidence of falls. An adequately powered study with control groups are required to test this intervention further
Neurexin in Embryonic Drosophila Neuromuscular Junctions
Background: Neurexin is a synaptic cell adhesion protein critical for synapse formation and function. Mutations in neurexin and neurexin-interacting proteins have been implicated in several neurological diseases. Previous studies have described Drosophila neurexin mutant phenotypes in third instar larvae and adults. However, the expression and function of Drosophila neurexin early in synapse development, when neurexin function is thought to be most important, has not been described. Methodology/Principal Findings: We use a variety of techniques, including immunohistochemistry, electron microscopy, in situ hybridization, and electrophysiology, to characterize neurexin expression and phenotypes in embryonic Drosophila neuromuscular junctions (NMJs). Our results surprisingly suggest that neurexin in embryos is present both pre and postsynaptically. Presynaptic neurexin promotes presynaptic active zone formation and neurotransmitter release, but along with postsynaptic neurexin, also suppresses formation of ectopic glutamate receptor clusters. Interestingly, we find that loss of neurexin only affects receptors containing the subunit GluRIIA. Conclusions/Significance: Our study extends previous results and provides important detail regarding the role of neurexin in Drosophila glutamate receptor abundance. The possibility that neurexin is present postsynaptically raises new hypotheses regarding neurexin function in synapses, and our results provide new insights into the role of neurexin i
Neurexins and Neuroligins: Recent Insights from Invertebrates
During brain development, each neuron must find and synapse with the correct pre- and postsynaptic partners. The complexity of these connections and the relatively large distances some neurons must send their axons to find the correct partners makes studying brain development one of the most challenging, and yet fascinating disciplines in biology. Furthermore, once the initial connections have been made, the neurons constantly remodel their dendritic and axonal arbours in response to changing demands. Neurexin and neuroligin are two cell adhesion molecules identified as important regulators of this process. The importance of these genes in the development and modulation of synaptic connectivity is emphasised by the observation that mutations in these genes in humans have been associated with cognitive disorders such as Autism spectrum disorders, Tourette syndrome and Schizophrenia. The present review will discuss recent advances in our understanding of the role of these genes in synaptic development and modulation, and in particular, we will focus on recent work in invertebrate models, and how these results relate to studies in mammals
Estudo das habilidades auditivas de resolução temporal e figura-fundo em dançarinos
Resumo:OBJETIVO:avaliar a habilidade auditiva de resolução temporal e de identificação de sentenças com mensagem competitiva em dançarinos.MÉTODOS:trata-se de um estudo prospectivo em que foram avaliados 40 indivÃduos distribuÃdos em dois grupos: grupo 1 (dançarinos) e grupo 2 (não-dançarinos). Os instrumentos de avaliação do processamento auditivo utilizados foram: teste Gaps-in-noise (GIN) e teste de reconhecimento de sentenças na presença de mensagem competitiva (SSI).RESULTADOS:os limiares de gap de ambos os grupos variaram de 3 a 6 ms e não demostraram diferença estatisticamente significante na comparação entre os grupos. Houve diferença estatisticamente significante ao comparar a porcentagem de identificação de gaps entre os dois grupos, sendo que o grupo de dançarinos apresentou média maior que o grupo de não dançarinos.O teste de reconhecimento de frases em escuta monótica (rel -10dB) mostrou resultados que variaram de 50% até 100% para o grupo de dançarinos e de 40% até 100% para o de não - dançarinos. A idade de inÃcio da dança (antes ou depois dos sete anos) não influenciou no desempenho dos testes estudados. Não houve correlação entre as variáveis dos achados obtidos nos testes estudados no grupo de dançarinos considerando o tempo de dança.CONCLUSÃO:a dança influenciou positivamente a habilidade auditiva de resolução temporal, pois o grupo de dançarinos apresentou desempenho melhor do que o grupo de não-dançarinos. A dança parece não ter influenciado a habilidade auditiva de figura-fundo
Genetic regulation of Nrnx1 expression: an integrative cross-species analysis of schizophrenia candidate genes
Neurexin 1 (NRXN1) is a large presynaptic transmembrane protein that has complex and variable patterns of expression in the brain. Sequence variants in NRXN1 are associated with differences in cognition, and with schizophrenia and autism. The murine Nrxn1 gene is also highly polymorphic and is associated with significant variation in expression that is under strong genetic control. Here, we use co-expression analysis, high coverage genomic sequence, and expression quantitative trait locus (eQTL) mapping to study the regulation of this gene in the brain. We profiled a family of 72 isogenic progeny strains of a cross between C57BL/6J and DBA/2J (the BXD family) using exon arrays and massively parallel RNA sequencing. Expression of most Nrxn1 exons have high genetic correlation (r>0.6) because of the segregation of a common trans eQTL on chromosome (Chr) 8 and a common cis eQTL on Chr 17. These two loci are also linked to murine phenotypes relevant to schizophrenia and to a novel human schizophrenia candidate gene with high neuronal expression (Pleckstrin and Sec7 domain containing 3). In both human and mice, NRXN1 is co-expressed with numerous synaptic and cell signaling genes, and known schizophrenia candidates. Cross-species co-expression and protein interaction network analyses identified glycogen synthase kinase 3 beta (GSK3B) as one of the most consistent and conserved covariates of NRXN1. By using the Molecular Genetics of Schizophrenia data set, we were able to test and confirm that markers in NRXN1 and GSK3B have epistatic interactions in human populations that can jointly modulate risk of schizophrenia
To stimulate or not to stimulate? A rapid systematic review of repetitive sensory stimulation for the upper-limb following stroke
Abstract: Background: Repetitive sensory stimulation (RSS) is a therapeutic approach which involves repeated electrical stimulation of the skin’s surface to improve function. This rapid systematic review aimed to describe the current evidence for repetitive sensory stimulation (RSS) in rehabilitation of the upper-limb for people who have had a stroke. Main text: Methods: Relevant studies were identified in a systematic search of electronic databases and hand-searching in February 2020. The findings of included studies were synthesized to describe: the safety of RSS, in whom and when after stroke it has been used, the doses used and its effectiveness. Results: Eight studies were included. No serious adverse events were reported. The majority of studies used RSS in participants with mild or moderate impairments and in the chronic stage after stroke. Four studies used RSS in a single treatment session, reporting significant improvements in strength and hand function. Findings from longitudinal studies showed few significant differences between control and experimental groups. Meta-analysis was not possible due to the heterogeneity of included studies. Conclusions: This review suggests that there is insufficient evidence to support the use of RSS for the upper-limb after stroke in clinical practice. However, this review highlights several clear research priorities including establishing the mechanism and in whom RSS may work, its safety and optimal treatment parameters to improve function of the upper-limb after stroke