700 research outputs found

    Ecohydraulic modelling of anabranching rivers

    Get PDF
    In this paper we provide the first quantitative evidence of the spatial complexity of habitat diversity across the flow regime for locally anabranching channels, and their potential increased biodiversity value in comparison to managed single-thread rivers. Ecohydraulic modelling is used to provide evidence for the potential ecological value of anabranching channels. Hydraulic habitat (biotopes) of an anabranched reach of the River Wear at Wolsingham, UK is compared with an adjacent artificially straightened single-thread reach downstream. 2D hydraulic modelling was undertaken across the flow regime. Simulated depth and velocity data were used to calculate Froude number (Fr) index; known to be closely associated with biotope type, allowing biotope maps to be produced for each flow simulation using published Fr limits. The gross morphology of the anabranched reach appears to be controlling flow hydraulics, creating a complex and diverse biotope distribution at low and intermediate flows. This contrasts markedly with the near uniform biotope pattern modelled for the heavily modified single-thread reach. As discharge increases the pattern of biotopes altered to reflect a generally higher energy system, interestingly, however, a number of low energy biotopes were activated through the anabranched reach as new sub-channels became inundated and this process is creating valuable refugia for macroinvertebrates and fish, during times of flood. In contrast, these low energy areas were not seen in the straightened single thread reach. Model results suggest that anabranched channels have a vital role to play in regulating flood energy on river systems and in creating and maintaining hydraulic habitat diversity

    Characterization of the Prion Protein (PRP) Gene in Ten Breeds of Sheep

    Get PDF
    Transmissible Spongiform Encephalopathies (TSE\u27s) are neurodegenerative disorders characterized by a long generation time, spongy degeneration in the cerebral gray matter, neuronal loss and proliferation and hypertrophy of glial cells. An abnormal form of the prion protein (PrP) plays a major part in TSE pathogenesis and has been hypothesized to be the only component of the infectious agent. Some animals exposed to scrapie, the TSE affecting sheep and goats, seem to be resistant to development of the disease. Alleles encoding amino acid substitutions at codons 136 (A/V) and 171 (Q/R/H) have been associated with scrapie resistance. Other amino acid substitutions at codons 112 (M/T), 137 (M/T), 141 (L/F), 154 (R/H), and 211 (R/Q) have been reported but not associated with scrapie resistance. It may be possible to reduce the incidence of ovine scrapie by increasing the frequency of resistant genotypes (AA-136, RR-171, or QR-171). Thus, an important consideration is the frequency of these genotypes in different breeds of sheep. In this study, the genetic sequence for codons 104-175 was determined for at least ten animals of ten sheep breeds (n=207). Genotypes at codons 112, 136, 154, and 171 were determined. For codon 136, the frequency of the susceptible allele (V) was less than 0.20 in all breeds. In contrast, the frequency of the susceptible allele (Q) at codon 171 ranged from 0.27 (St. Croix) to 0.96 (Hampshire). In addition, a previously unreported substitution was found at codon 143 (H/R), with frequencies as high as 0.40

    Conservation status of a recently described endemic land snail, Candidula coudensis, from the Iberian Peninsula

    Get PDF
    Research ArticleWe assessed the distribution, population size and conservation status of Candidula coudensis, a recently described endemic land snail from Portugal. From March 2013 to April 2014, surveys were carried out in the region where the species was described. We found an extent of occurrence larger than originally described, but still quite small (13.5 km2). The species was found mainly in olive groves, although it occurred in a variety of other habitats with limestone soils, including grasslands, scrublands and stone walls. Minimum population estimate ranged from 110,000–311,000 individuals. The main identified potential threats to the species include wildfires, pesticides and quarrying. Following the application of IUCN criteria, we advise a conservation status of either “Least Concern” or “Near-threatened” under criterion D (restricted population)info:eu-repo/semantics/publishedVersio

    Structural mapping in statistical word problems: A relational reasoning approach to Bayesian inference

    Get PDF
    Presenting natural frequencies facilitates Bayesian inferences relative to using percentages. Nevertheless, many people, including highly educated and skilled reasoners, still fail to provide Bayesian responses to these computationally simple problems. We show that the complexity of relational reasoning (e.g., the structural mapping between the presented and requested relations) can help explain the remaining difficulties. With a non-Bayesian inference that required identical arithmetic but afforded a more direct structural mapping, performance was universally high. Furthermore, reducing the relational demands of the task through questions that directed reasoners to use the presented statistics, as compared with questions that prompted the representation of a second, similar sample, also significantly improved reasoning. Distinct error patterns were also observed between these presented- and similar-sample scenarios, which suggested differences in relational-reasoning strategies. On the other hand, while higher numeracy was associated with better Bayesian reasoning, higher-numerate reasoners were not immune to the relational complexity of the task. Together, these findings validate the relational-reasoning view of Bayesian problem solving and highlight the importance of considering not only the presented task structure, but also the complexity of the structural alignment between the presented and requested relations

    Toward transduodenal diffuse optical tomography of proximal pancreas

    Get PDF
    We demonstrate the feasibility of diffuse optical tomography (DOT) of the proximal pancreas by using optical applicator channels deployed longitudinally along the exterior surface of a duodenoscope. As the duodenum that nearly encircles the proximal pancreas forms a natural "C-loop" that is approximately three-quarters of a circle of 5-6 cm in diameter, a multichannel optical applicator attached to a duodenoscope has the potential to perform transduodenal DOT sampling of the bulk proximal pancreas wherein most cancers and many cystic lesions occur. The feasibility of transduodenal DOT is demonstrated on normal porcine pancreas tissues containing an introduced gelatinous inclusion of approximately 3 cm in diameter, by using nine source channels and six detector channels attached to a duodenoscope. Concurrent ultrasonography of the gelatinous inclusion in the porcine pancreas parenchyma provided a coarse, albeit indispensable, anatomic prior to transduodenal DOT in reconstructing a contrast of optical properties in the pancreas.Electrical and Computer EngineeringVeterinary Clinical Science

    Identifying the mechanisms underpinning recognition of structured sequences of action

    Get PDF
    © 2012 The Experimental Psychology SocietyWe present three experiments to identify the specific information sources that skilled participants use to make recognition judgements when presented with dynamic, structured stimuli. A group of less skilled participants acted as controls. In all experiments, participants were presented with filmed stimuli containing structured action sequences. In a subsequent recognition phase, participants were presented with new and previously seen stimuli and were required to make judgements as to whether or not each sequence had been presented earlier (or were edited versions of earlier sequences). In Experiment 1, skilled participants demonstrated superior sensitivity in recognition when viewing dynamic clips compared with static images and clips where the frames were presented in a nonsequential, randomized manner, implicating the importance of motion information when identifying familiar or unfamiliar sequences. In Experiment 2, we presented normal and mirror-reversed sequences in order to distort access to absolute motion information. Skilled participants demonstrated superior recognition sensitivity, but no significant differences were observed across viewing conditions, leading to the suggestion that skilled participants are more likely to extract relative rather than absolute motion when making such judgements. In Experiment 3, we manipulated relative motion information by occluding several display features for the duration of each film sequence. A significant decrement in performance was reported when centrally located features were occluded compared to those located in more peripheral positions. Findings indicate that skilled participants are particularly sensitive to relative motion information when attempting to identify familiarity in dynamic, visual displays involving interaction between numerous features

    Temporal variability in large grazer space use in an experimental landscape

    Get PDF
    Citation: Raynor, E. J., Joern, A., Skibbe, A., Sowers, M., Briggs, J. M., Laws, A. N., & Goodin, D. (2017). Temporal variability in large grazer space use in an experimental landscape. Ecosphere, 8(1), 18. doi:10.1002/ecs2.1674Land use, climate change, and their interaction each have great potential to affect grazing systems. With anticipated more frequent and extensive future drought, a more complete understanding of the mechanisms that determine large grazer landscape-level distribution under varying climatic conditions is integral to ecosystem management. Using an experimental setting with contrasting fire treatments, we describe the inter-annual variability of the effect of landscape topography and disturbance from prescribed spring fire on large grazer space use in years of variable resource availability. Using GPS telemetry, we investigated space use of plains bison (Bison bison bison) as they moved among watersheds managed with variable experimental burn treatments (1-, 2-, 4-, and 20-year burn intervals) during a seven-year period spanning years of average-to-above average forage production and severe drought. At the landscape scale, bison more strongly favored high-elevation and recently burned watersheds with watersheds burned for the first time in 2 or 4 yr consistently showing higher use relative to annually burned watersheds. In particular, watersheds burned for the first time in 4 yr were avoided to lesser extent than other more frequently burned watersheds during the dormant season. This management type also maintained coupling between bison space use and post-fire regrowth across post-drought growing season months, whereas watersheds with more frequent fire-return intervals attracted bison in only the first month post-fire. Hence, fire frequency played a role in maintaining the coupling of grazer and post-fire regrowth, the fire-grazer interaction, in response to drought-induced reduction in fuel loads. Moreover, bison avoided upland habitat in poor forage production years, when forage regrowth is less likely to occur in upland than in lowland habitats. Such quantified responses of bison to landscape features can aid future conservation management efforts and planning to sustain fire-grazer interactions and resulting spatial heterogeneity in grassland ecosystems

    Tensors and compositionality in neural systems

    Get PDF
    Neither neurobiological nor process models of meaning composition specify the operator through which constituent parts are bound together into compositional structures. In this paper, we argue that a neurophysiological computation system cannot achieve the compositionality exhibited in human thought and language if it were to rely on a multiplicative operator to perform binding, as the tensor product (TP)-based systems that have been widely adopted in cognitive science, neuroscience and artificial intelligence do. We show via simulation and two behavioural experiments that TPs violate variable-value independence, but human behaviour does not. Specifically, TPs fail to capture that in the statements fuzzy cactus and fuzzy penguin, both cactus and penguin are predicated by fuzzy(x) and belong to the set of fuzzy things, rendering these arguments similar to each other. Consistent with that thesis, people judged arguments that shared the same role to be similar, even when those arguments themselves (e.g., cacti and penguins) were judged to be dissimilar when in isolation. By contrast, the similarity of the TPs representing fuzzy(cactus) and fuzzy(penguin) was determined by the similarity of the arguments, which in this case approaches zero. Based on these results, we argue that neural systems that use TPs for binding cannot approximate how the human mind and brain represent compositional information during processing. We describe a contrasting binding mechanism that any physiological or artificial neural system could use to maintain independence between a role and its argument, a prerequisite for compositionality and, thus, for instantiating the expressive power of human thought and language in a neural system

    Computational and Biological Analogies for Understanding Fine-Tuned Parameters in Physics

    Full text link
    In this philosophical paper, we explore computational and biological analogies to address the fine-tuning problem in cosmology. We first clarify what it means for physical constants or initial conditions to be fine-tuned. We review important distinctions such as the dimensionless and dimensional physical constants, and the classification of constants proposed by Levy-Leblond. Then we explore how two great analogies, computational and biological, can give new insights into our problem. This paper includes a preliminary study to examine the two analogies. Importantly, analogies are both useful and fundamental cognitive tools, but can also be misused or misinterpreted. The idea that our universe might be modelled as a computational entity is analysed, and we discuss the distinction between physical laws and initial conditions using algorithmic information theory. Smolin introduced the theory of "Cosmological Natural Selection" with a biological analogy in mind. We examine an extension of this analogy involving intelligent life. We discuss if and how this extension could be legitimated. Keywords: origin of the universe, fine-tuning, physical constants, initial conditions, computational universe, biological universe, role of intelligent life, cosmological natural selection, cosmological artificial selection, artificial cosmogenesis.Comment: 25 pages, Foundations of Science, in pres
    corecore