173 research outputs found

    Integrated stratigraphy and astrochronology of the Messinian GSSP at Oued Akrech (Atlantic Morocco)

    Get PDF
    A much improved high-resolution integrated stratigraphy (calcareous plankton biostratigraphy, magnetostratigraphy, cyclostratigraphy) is presented for the classic section of Oued Akrech (Atlantic Morocco) straddling the Tortonian^Messinian boundary. Magnetobiostratigraphic correlations with time-equivalent and astronomically dated sections in the Mediterranean indicate that cyclic alternations of indurated light beige coloured marls and softer, more clayey and reddish coloured marls are dominantly precession-controlled. Characteristic sedimentary cycle patterns, in particular those reflecting precession^obliquity interference, allow for one possible tuning, thus providing accurate astronomical ages for cycles, calcareous plankton events and magnetic reversals. The tuning further indicates that the reddish layers are the equivalent of sapropels in the Mediterranean. The Messinian Global boundary Stratotype Section and Point (GSSP) has recently been formally defined at the base of the reddish layer of cycle No. 15 in section Oued Akrech. This level coincides closely with the first regular occurrence of the Globorotalia miotumida group and is astronomically dated at 7.251 Ma. The global correlation potential is guaranteed by the straightforward calibration of the Oued Akrech magnetostratigraphy to the geomagnetic polarity time scale, locating the GSSP within C3Br.1r. In the marine realm the calcareous nannofossil genus Amaurolithus provides a series of extremely useful events to delimit the boundary on a global scale. The astronomical tuning guarantees a direct first-order calibration of the Messinian GSSP to the standard geological time scale once, as anticipated, the late Miocene part of the astronomical time scale has been incorporated

    Unsupervised Spike Sorting for Large-Scale, High-Density Multielectrode Arrays

    Get PDF
    We present a method for automated spike sorting for recordings with high-density, large-scale multielectrode arrays. Exploiting the dense sampling of single neurons by multiple electrodes, an efficient, low-dimensional representation of detected spikes consisting of estimated spatial spike locations and dominant spike shape features is exploited for fast and reliable clustering into single units. Millions of events can be sorted in minutes, and the method is parallelized and scales better than quadratically with the number of detected spikes. Performance is demonstrated using recordings with a 4,096-channel array and validated using anatomical imaging, optogenetic stimulation, and model-based quality control. A comparison with semi-automated, shape-based spike sorting exposes significant limitations of conventional methods. Our approach demonstrates that it is feasible to reliably isolate the activity of up to thousands of neurons and that dense, multi-channel probes substantially aid reliable spike sorting

    Differential Distribution of Retinal Ca2+/Calmodulin-Dependent Kinase II (CaMKII) Isoforms Indicates CaMKII-β and -δ as Specific Elements of Electrical Synapses Made of Connexin36 (Cx36)

    Get PDF
    AII amacrine cells are essential interneurons of the primary rod pathway and transmit rod-driven signals to ON cone bipolar cells to enable scotopic vision. Gap junctions made of connexin36 (Cx36) mediate electrical coupling among AII cells and between AII cells and ON cone bipolar cells. These gap junctions underlie a remarkable degree of plasticity and are modulated by different signaling cascades. In particular, Ca2+/calmodulin-dependent protein kinase II (CaMKII) has been characterized as an important regulator of Cx36, capable of potentiating electrical coupling in AII cells. However, it is unclear which CaMKII isoform mediates this effect. To obtain a more detailed understanding of the isoform composition of CaMKII at retinal gap junctions, we analyzed the retinal distribution of all four CaMKII isoforms using confocal microscopy. These experiments revealed a differential distribution of CaMKII isoforms: CaMKII-ι was strongly expressed in starburst amacrine cells, which are known to lack electrical coupling. CaMKII-β was abundant in OFF bipolar cells, which form electrical synapses in the outer and the inner retina. CaMKII-γ was diffusely distributed across the entire retina and could not be assigned to a specific cell type. CaMKII-δ labeling was evident in bipolar and AII amacrine cells, which contain the majority of Cx36-immunoreactive puncta in the inner retina. We double-labeled retinas for Cx36 and the four CaMKII isoforms and revealed that the composition of the CaMKII enzyme differs between gap junctions in the outer and the inner retina: in the outer retina, only CaMKII-β colocalized with Cx36-containing gap junctions, whereas in the inner retina, CaMKII-β and -δ colocalized with Cx36. This finding suggests that gap junctions in the inner and the outer retina may be regulated differently although they both contain the same connexin. Taken together, our study identifies CaMKII-β and -δ as Cx36-specific regulators in the mouse retina with CaMKII-δ regulating the primary rod pathway

    The Cyclostratigraphy Intercomparison Project (CIP): consistency, merits and pitfalls

    Get PDF
    Cyclostratigraphy is an important tool for understanding astronomical climate forcing and reading geological time in sedimentary sequences, provided that an imprint of insolation variations caused by Earth’s orbital eccentricity, obliquity and/or precession is preserved (Milankovitch forcing). Numerous stratigraphic and paleoclimate studies have applied cyclostratigraphy, but the robustness of the methodology and its dependence on the investigator have not been systematically evaluated. We developed the Cyclostratigraphy Intercomparison Project (CIP) to assess the robustness of cyclostratigraphic methods using an experimental design of three artificial cyclostratigraphic case studies with known input parameters. Each case study is designed to address specific challenges that are relevant to cyclostratigraphy. Case 1 represents an offshore research vessel environment, as only a drill-core photo and the approximate position of a late Miocene stage boundary are available for analysis. In Case 2, the Pleistocene proxy record displays clear nonlinear cyclical patterns and the interpretation is complicated by the presence of a hiatus. Case 3 represents a Late Devonian proxy record with a low signal-to-noise ratio with no specific theoretical astronomical solution available for this age. Each case was analyzed by a test group of 17-20 participants, with varying experience levels, methodological preferences and dedicated analysis time. During the CIP 2018 meeting in Brussels, Belgium, the ensuing analyses and discussion demonstrated that most participants did not arrive at a perfect solution, which may be partly explained by the limited amount of time spent on the exercises (∼4.5 hours per case). However, in all three cases, the median solution of all submitted analyses accurately approached the correct result and several participants obtained the exact correct answers. Interestingly, systematically better performances were obtained for cases that represented the data type and stratigraphic age that were closest to the individual participants’ experience. This experiment demonstrates that cyclostratigraphy is a powerful tool for deciphering time in sedimentary successions and, importantly, that it is a trainable skill. Finally, we emphasize the importance of an integrated stratigraphic approach and provide flexible guidelines on what good practices in cyclostratigraphy should include. Our case studies provide valuable insight into current common practices in cyclostratigraphy, their potential merits and pitfalls. Our work does not provide a quantitative measure of reliability and uncertainty of cyclostratigraphy, but rather constitutes a starting point for further discussions on how to move the maturing field of cyclostratigraphy forward

    Connexin30.2:<i>In vitro</i> interaction with connexin36 in hela cells and expression in AII amacrine cells and intrinsically photosensitive ganglion cells in the mouse retina

    Get PDF
    Electrical coupling via gap junctions is an abundant phenomenon in the mammalian retina and occurs in all major cell types. Gap junction channels are assembled from different connexin subunits, and the connexin composition of the channel confers specific properties to the electrical synapse. In the mouse retina, gap junctions were demonstrated between intrinsically photosensitive ganglion cells and displaced amacrine cells but the underlying connexin remained undetermined. In the primary rod pathway, gap junctions play a crucial role, coupling AII amacrine cells among each other and to ON cone bipolar cells. Although it has long been known that connexin36 and connexin45 are necessary for the proper functioning of this most sensitive rod pathway, differences between homocellular AII/AII gap junctions and AII/ON bipolar cell gap junctions suggested the presence of an additional connexin in AII amacrine cells. Here, we used a connexin30.2-lacZ mouse line to study the expression of connexin30.2 in the retina. We show that connexin30.2 is expressed in intrinsically photosensitive ganglion cells and AII amacrine cells. Moreover, we tested whether connexin30.2 and connexin36 – both expressed in AII amacrine cells – are able to interact with each other and are deposited in the same gap junctional plaques. Using newly generated anti-connexin30.2 antibodies, we show in HeLa cells that both connexins are indeed able to interact and may form heteromeric channels: both connexins were co-immunoprecipitated from transiently transfected HeLa cells and connexin30.2 gap junction plaques became significantly larger when co-expressed with connexin36. These data suggest that connexin36 is able to form heteromeric gap junctions with another connexin. We hypothesize that co-expression of connexin30.2 and connexin36 may endow AII amacrine cells with the means to differentially regulate its electrical coupling to different synaptic partners

    Evidence of early bottom water current flow after the Messinian Salinity Crisis in the Gulf of Cadiz

    Get PDF
    Highlights • Stratigraphic framework over the Miocene-Pliocene boundary at IODP Site U1387. • Abrupt sedimentary changes over the Miocene-Pliocene boundary. • Clear hints for onset of Mediterranean Outflow after the Messinian Salinity Crisis. • Evidence of bottom water currents in contouritic sedimentation and elevated Zr/Al. • Quiet, hemipelagic sediment deposition during the Messinian in the Gulf of Cadiz. Abstract Integrated Ocean Drilling Program (IODP) Expedition 339 cored multiple sites in the Gulf of Cadiz in order to study contourite deposition resulting from Mediterranean Outflow water (MOW). One hole, U1387C, was cored to a depth of 865.6 meters below seafloor (mbsf) with the goal of recovering the Latest Miocene to Pliocene transition in order to evaluate the history of MOW immediately after the end of the Messinian Salinity Crisis. To understand this history, an accurate age model for the succession is needed, but is challenging to construct, because the Miocene-Pliocene boundary is not marked by a clear biostratigraphic event in the Atlantic and coring gaps occur within the recovered stratigraphic record. These limitations are overcome by combining a variety of chronostratigraphic datasets to construct an age-model that fits the currently available age indicators and demonstrates that coring in Hole U1387C did indeed recover the Miocene-Pliocene boundary at around 826 mbsf. This boundary is associated with a distinct and abrupt change in depositional environment. During the latest Messinian, hemipelagic sediments exhibiting precession-induced climate variability were deposited. These are overlain by Pliocene sediments deposited at a much higher sedimentation rate, with much higher and more variable XRF-scanning Zr/Al ratios than the underlying sediment, and that show evidence of winnowing, particle sorting and increasing grain size, which we interpret to be related to the increasing flow of MOW. Pliocene sedimentary cyclicity is clearly visible in both the benthic δ18O record and the Zr/Al data and is probably also precessionally controlled. Two contouritic bigradational sandy-beds are revealed above the third sedimentary cycle of the Pliocene. On the basis of these results, we conclude that sedimentation associated with weak Mediterranean-Atlantic exchange, began in the Gulf of Cadiz virtually at or shortly after the Miocene-Pliocene boundary

    Latest Miocene restriction of the Mediterranean Outflow Water:a perspective from the Gulf of CĂĄdiz

    Get PDF
    The Mediterranean-Atlantic water mass exchange provides the ideal setting for deciphering the role of gateway evolution in ocean circulation. However, the dynamics of Mediterranean Outflow Water (MOW) during the closure of the Late Miocene Mediterranean-Atlantic gateways are poorly understood. Here, we define the sedimentary evolution of Neogene basins from the Gulf of CĂĄdiz to the West Iberian margin to investigate MOW circulation during the latest Miocene. Seismic interpretation highlights a middle to upper Messinian seismic unit of transparent facies, whose base predates the onset of the Messinian salinity crisis (MSC). Its facies and distribution imply a predominantly hemipelagic environment along the Atlantic margins, suggesting an absence or intermittence of MOW preceding evaporite precipitation in the Mediterranean, simultaneous to progressive gateway restriction. The removal of MOW from the Mediterranean-Atlantic water mass exchange reorganized the Atlantic water masses and is correlated to a severe weakening of the Atlantic Meridional Overturning Circulation (AMOC) and a period of further cooling in the North Atlantic during the latest Miocene
    • …
    corecore