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SUMMARY 
	

We present a method for automated spike sorting for 
recordings with high-density, large-scale multielec- 
trode arrays. Exploiting the dense sampling of single 
neurons by multiple  electrodes, an efficient, low- 
dimensional representation of detected spikes con- 
sisting of estimated spatial spike locations and domi- 
nant  spike shape features is exploited for fast  and 
reliable clustering into single units. Millions of events 
can  be sorted in minutes, and  the method is parallel- 
ized  and  scales better than   quadratically with  the 
number of detected spikes. Performance is demon- 
strated using recordings with a 4,096-channel array 
and   validated  using  anatomical  imaging,  optoge- 
netic  stimulation, and  model-based quality  control. 
A comparison with semi-automated, shape-based 
spike sorting exposes  significant limitations of 
conventional methods. Our approach demonstrates 
that  it is feasible to reliably  isolate the  activity  of up 
to thousands of neurons and  that  dense, multi-chan- 
nel probes substantially aid reliable spike sorting. 
	

INTRODUCTION 
	

Large-scale, dense probes and arrays  and planar multielectrode 
arrays  (MEAs) enable extracellular recordings of thousands  of 
neurons simultaneously (Ballini  et  al.,  2014;  Berdondini et  al., 
2005;  Eversmann et  al., 2003;  Frey et  al., 2010;  Hutzler  et  al., 
2006;   Maccione  et   al.,   2014;   Mu€ller  et   al.,   2015;   Obien 
et al., 2015). Exploiting such  data requires the reliable isolation 
of extracellularly  recorded spikes generated by single  neurons 

(spike  sorting),  a computationally costly  task  that  is difficult to 
scale up  to  large  numbers of recording channels (Rey  et  al., 
2015).  For  conventional devices with up  to  tens  of recording 
channels, a typical  workflow consists of initial event  detection, 
followed  by semi-automated clustering based on spike  wave- 
form differences, followed by manual  inspection and refinement. 
If  the  recording channels are  sufficiently  well separated, then 
there  is no or little overlap  between their signals, and spike  sort- 
ing can be performed by clustering a low-dimensional represen- 
tation of spike shapes (Harris et al., 2000; Lewicki, 1998; Quiroga 
et al., 2004). 

This approach is inappropriate for dense, large-scale record- 
ings.  First, on dense MEAs, spike  sorting  becomes a complex 
assignment problem because not only multiple neurons contribute 
to the compound signal recorded on distinct channels, but individ- 
ual spikes are also  recorded by several neighboring channels 
simultaneously (Prentice et al., 2011; Rossant et al., 2016). Events 
are thus described by multiple waveforms and their locations, with 
an exponential number of potential assignments that can only be 
tackled using approximate algorithms. Second, the size of the da- 
tasets makes extensive manual intervention impractical; hence, as 
much of the process as possible, including quality control, should 
be automated. 

Much  of the  variability in spike  shapes is due  to measuring 
them at different positions relative to the neuron. In conventional 
recordings, relatively small signals are measured using  large 
electrodes  averaging currents originating  from  different  parts 
of the neuron. High-density MEAs with small electrodes detect 
primarily strong currents at the  axon  initial segment (AIS). The 
mechanism  for  generating  action   potentials  is  thus   repre- 
sented with a higher  weight  in the measured signals, leading  to 
less  variability in measured spike  shapes. Existing solutions, 
demonstrated on  data from  hundreds of channels, are  either 
template-matching methods (Marre et al., 2012; Prentice et al., 
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A C Figure 1.  Spatial Event Localization Reveals 
Isolated Spike Clusters 
(A) Confocal image  of a Thy1-ChR2-YFP retina 
expressing yellow  fluorescent protein   under   the 
Thy1 promoter, placed on the array  for recording. 
Electrodes can  be  seen as  small squares in areas 
not  covered by the  retina.  The active  area  of the 
array   is  indicated  by  dashed  lines.   Scale  bar, 
200 mm. 
(B) Activity map of a quarter of the array after spatial 
event  localization. Spike  counts are shown as a 
density plot,  spatially  binned  with 8.4  mm  resolu- 
tion. Spikes cluster in distinct  groups in space, 
presumably originating  from individual neurons. 
(C) Several  detected events (rectangle in B), shown 

B at   their   estimated   locations  (colored    circles), 
and  the  corresponding episodes in the  raw  data D E (colored  traces). Scale bars, 5 ms and  200 mV. 
(D) Average  peak  signal decay for detected events 
as a function of distance. On average, a significant 
signal is detectable in an area  of 100mm around the 
spike  peak  location. This plot  is based on  signal 
peaks at the  spike  time  ± 2 recording frames, so 
signals beyond 200 mm reflect primarily noise. 
(E) Twenty  randomly selected  spike   shapes  for 
events localized   within  the  area   marked by  the 
large circle in (C), indicating the presence of signals 
from at least  two different neurons at this location. 
Scale bars, 5 ms and  200 mV. 
(B–E) The same dataset acquired at 24 kHz on 32 3 
32 channels (A shows a different retina). 

	
2011),  or the  removal  of uninformative spike  features to make 
fitting  of  a  mixture  model   computationally feasible  (Rossant 
et al., 2016). 

Here  we present a very fast  and  fully automated  method for 
spike  sorting.  Dense sampling enabled us to obtain  a rough  es- 
timate  of a source location  for each detected event  (Muthmann 
et  al., 2015), yielding dense, spatially  separated  clusters origi- 
nating  from single neurons, as demonstrated using optogenetic 
stimulation and  confocal imaging.  Average  waveforms are  ob- 
tained  for each event, with noise reduced by signal interpolation. 
Shape features extracted from this waveform are then combined 
with spatial locations so that the clustering problem is reduced to 
finding local density peaks in few dimensions. 

We demonstrate this method using  light responses in the 
mouse retina and  spontaneous activity in cell cultures recorded 
with a 4,096-channel MEA. A direct  comparison with conven- 
tional spike  sorting  also  exposes severe and  hard  to detect 
limitations  of the  latter.  A parallelized implementation of this 
method  that   is  capable  of  sorting   millions  of  spikes  within 
a few minutes on a fast  workstation, as  well as  a tool for data 
visualization, can  be downloaded at https://github.com/ 
martinosorb/herding-spikes. 

	
RESULTS 

	
Spatial Spike Localization 
Figure 1A illustrates a retinal whole-mount placed on the MEA. 
Spikes are  detected using  a threshold-based method that  ex- 
ploits dense sampling to improve detection performance and as- 
signs  each spike an estimated location  based on the barycenter 

of the spatial  signal profile (Muthmann et al., 2015). This proced- 
ure yields spatio-temporal event  maps, where  each event  is 
identified by a time stamp, two spatial  coordinates, and a single 
interpolated waveform. The resulting  spatial  activity maps pro- 
vide  a  higher  spatial  resolution for spike  locations than  given 
by the electrode pitch  (Figure 1B). Spikes were  found  in dense 
clusters surrounded by areas of low event  density. The relation- 
ship  between  recorded  signals and   spike   locations  is  illus- 
trated in Figure 1C, where  estimated spike  locations are shown 
together with corresponding raw  data segments from  nearby 
electrodes. The examples show  how  spike  locations relate  to 
the spatial  decay of the voltage  peaks and  that  the  decay was 
sufficiently wide to estimate their peak  locations (Figure 1D; Pet- 
tersen and  Einevoll; 2008;  Lindé n et  al., 2011;  Mechler  et  al., 
2011). Thus, on dense MEAs, event locations provide a compact 
summary of the spatial  activity footprint for each spike.  Inspect- 
ing waveforms, however, reveals the presence of multiple units 
in small areas (Figure 1E), demonstrating that  clustering spatial 
locations alone  is insufficient  for reliable single-unit  isolation 
(Prentice et al., 2011). 
	
Combined Spatial and Shape-Based Clustering 
Next, spikes are clustered using a combination of their estimated 
locations and  dominant waveform features, extracted via prin- 
cipal-component analysis (PCA), which  provide  a complemen- 
tary, compact description of the  events. The location  estimate 
is an  effective  way  of summarizing the  spatial  footprint  each 
spike  leaves on the array, whereas waveforms enable the sepa- 
ration of spatially overlapping sources, and they remove ambigu- 
ities at spatial  cluster boundaries. 
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Figure 2.  Illustration of Clustered Spike Data 
(A) Overview of all single units obtained by clustering a retinal dataset (the same as in Figure 1, acquired at 24 kHz), shown as circles at their estimated locations in 
array coordinates. Circled areas are proportional to firing rates. 
(B) Magnified  view of a group  of units  (the area  in the  white  rectangle in A), showing a subset of spikes at  their estimated locations (dots,  colored by unit 
membership; the same colors  as in A) and  the average waveform associated with each unit. 
(C) As (B) but with spike colors encoding the magnitude of the spike waveform projection along the first principal component (PC1 score). Higher scores represent 
bi-phasic waveforms and  low scores weak  deflections without a clear bi-phasic shape. 
(D) Electrical images for two units. Negative signals relative to baseline are colored in blue and positive signals in red. The cross indicates the centroid of the spike 
locations. Each  square represents one  electrode; 15 3 15 (0.63 mm 3 0.63 mm) electrodes are shown. Axonal propagation can  be seen, moving downward 
toward the optic  disk. 
(E) Clustered recording from a hippocampal culture. Shown are raw spike counts (left), all units obtained during the clustering step (center), and a magnified view 
of a small area  of the MEA showing individual spikes and average unit waveforms (right). This recording was acquired with 4,096 channels at a 7-kHz sampling 
rate,  and  a waveform classifier  was  used to remove noise  prior to clustering (Figure S1). 

	

	
The  mean shift  algorithm  was  used for clustering, with the 

number of clusters automatically determined and  controlled by 
a single scale parameter (Comaniciu and  Meer, 2002). Clusters 
are  formed  by  moving  spikes along  density gradients and 
augmented by local  differences in spike  waveforms. Including 
the first two principal components was sufficient to successfully 
isolate  single  units,  reducing the  high dimensional assignment 
problem to four-dimensional clustering, which can be performed 
in minutes for millions of events. In addition  to the scale param- 
eter, this method also requires a mixing coefficient for the shape 
information. 

Figures  2A–2C show  the  result  of clustering waveforms ac- 
quired  at 24 kHz from 1,024  channels, yielding 440,000 spikes 
separated into  1,600  units.  Cluster  sizes  ranged from  tens  of 
spikes to several thousands, corresponding to firing rates ranging 
from 0.1 to 30 Hz. In a magnified view, Figure 2B shows that units 
may indeed spatially overlap but are well separated by their wave- 
form features. Overall, units with clearly bi-phasic and  large- 
amplitude waveforms tend  to form the  more  spatially  coherent 
clusters, whereas smaller events are spatially more spread out. 

Units with small waveforms originate  from neurons with weak 
signals  detected  because  of   low   thresholding  during   the 
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detection step to avoid  false  negatives. The first principal 
component (PC) projection (PC1) for the events is a good  indica- 
tor of their  biphasic character, and,  using  the  convention that 
positive  values  always  coincide with more  biphasic waveforms, 
this  measure may  be  used to  (de)select units  for subsequent 
analysis (Figure 2C). A more precise method, used for all record- 
ings  performed at lower sampling rates (<10 kHz), is to train a 
classifier  to pre-select valid spikes prior to clustering based on 
salient  waveform features (Figure S1). This method reliably re- 
moves noise  because the classifier  is well adjusted to the spe- 
cific  recording conditions. Importantly,   however, this  step  is 
not required for sampling rates of more than  10 kHz. 

As a  first assessment of the  clustered units,  we  generated 
electrical images for individual units  (Figure 2D). These images 
provide  a spatio-temporal representation of the raw signal 
recorded  around the  time  of  spiking  and  is  generated as  a 
spike-triggered average  of  the  signal  on  each electrode. Of 
406 inspected units with at least  100 spikes, all but one had  an 
estimated location  within 40 mm of the electrode that contained 
the peak  signal  (median  distance, 9.7 mm), indicating  that  units 
are indeed well aligned with their spatio-temporal electrical foot- 
print.  Furthermore, the  recordings were  of sufficient  detail  to 
isolate axonal propagation (Figure 2D), characterized by a sepa- 
rate,  weak  positive  peak  followed  by a negative peak  traveling 
downward (toward  the optic  disk). Because these events peak 
within less  than 100 ms of the main signal, they are not detected 
as  separate events but,  instead, introduce a small  bias  on the 
location  estimates during spike  localization. 

We also tested our method on activity recorded from cultured 
hippocampal neurons. Figure 2E illustrates that  isolation  of sin- 
gle units  is also  feasible for these preparations, although here 
the spike localization was less precise than in the retina. We attri- 
bute this to a larger effective conductivity in the space above the 
electrodes, resulting  in smaller signal amplitudes, which, in turn, 
increases the  influence   of  noise   on  localization   (Ness  et  al., 
2015).  Such  conductivity is likely much  lower  for the  200-  to 
300-mm-thick retina,  leading  to larger and  more  precisely 
localizable signals.  Ness   et  al.  (2015)  show   that  even  small 
MEA-tissue  gaps strongly  reduce the signal amplitudes, a likely 
explanation for the clear,  sharp boundaries between areas with 
and  without  recorded spikes. Nevertheless, spikes in cultures 
were typically spatially well clustered, and waveform differences 
had sufficient detail to allow separation of overlapping units (Fig- 
ure 2E, right). 

	
Waveform Features Are  Essential for  Reliable 
Clustering 
To assess the importance of waveform features for sorting  and 
the role of the mixing coefficient a, we compared the correlations 
between all waveforms within each unit with cross-correlations 
of waveforms between this unit and  its closest neighbor or all 
nearby spikes within a radius  of 42 mm (electrode pitch; Figures 
3A–3C). A well sorted unit is expected to have  high within- 
correlations and  smaller  cross-correlations. Figure  3A shows 
an example where  spatial  clustering was  sufficient  to isolate  a 
unit. Correlations after clustering spatial  locations alone  (a = 0) 
are  very similar to those obtained when  waveforms are  added 
(a = 0.3), with few spikes re-assigned based on their waveform 

features. In contrast, Figures   3B  and  3C  illustrate  examples 
with  two  clearly  distinct  units  with  spatial   overlap  that  could 
only be separated by waveform features. Increasing a increases 
self-correlation, with lower cross-correlations for nearby events 
with sufficiently distinct  waveforms in other  units (Figure 3B). 
However, some high  cross-correlations can  remain  for similar 
but spatially  well separated units (Figure 3C). 

To quantify  the  separability of these distributions, we 
computed the  area  under  the  receiver  operating characteristic 
(ROC) curves (AUC), constructed from the distributions of self- 
correlations and correlations with events in the nearest unit (Fig- 
ure 3E) or all neighboring events (Figure 3F). The AUC was calcu- 
lated  as  the  integral  of the  area  spanned by the  probability  of 
finding a self-correlation above a sliding threshold, as a function 
of the probability  of finding a cross-correlation above this 
threshold (true positives versus false  positives), so that  a value 
of 1 corresponds to perfectly  separated  distributions, whereas 
0 indicates full overlap. 

The median AUC for all units increases with a before plateau- 
ing at values  about az0:4 (Figure 3D), indicating  that  the com- 
bined   features overall  improved separation  into  single  units. 
The AUC distributions show that this effect is substantial (Figures 
3E and  3F). Although spatial  clustering alone  only yielded  three 
(of 788 units  with more  than  100 spikes)  units  with AUC > 0.9 
compared with events from its closest neighbor, this increases 
to  130  (of 956  units  with  more  than  100  spikes)  for a = 0:32. 
This number rapidly  increases when  az0:25  and  plateaus  for 
larger values, indicating that the precise choice of this parameter 
is not  critical.  It is important to  note  that,  although high  AUC 
values  indicate well isolated units based on waveform features 
alone,  units  with a small  AUC should  not  be  rejected because 
they may still be spatially  well isolated. 

In summary, waveform features help  both  to  refine  existing 
units found by spatial  clustering and to separate spatially 
overlapping  units.   Event   locations  and   waveforms  provide 
an  effective  complementary approach of summarizing the  key 
features of the  spatio-temporal footprint  left by spikes on  the 
array. 
	
Validation with Optogenetics and Anatomical Imaging 
To  test   whether  the   detected  units   indeed  correspond  to 
single  neurons, we  used  Thy1-ChR2-YFP retinas (see  Experi- 
mental  Procedures)  expressing Channelrhodopsin-2 (ChR2), a 
light-gated cation  channel, under  the  Thy1 promoter in about 
half of all retinal  ganglion  cells  (RGCs) (Raymond et al., 2008). 
This allowed  us  to stimulate spiking  exclusively  in a subset  of 
visually identifiable RGCs to clearly establish correlates between 
single spike-sorted units and  individual RGCs. 

We first compared the photoreceptor-driven activity recorded 
during  normal  light stimulation (irradiance 4 mW/cm2,  full field 
flashes at 0.5 Hz) with recordings obtained when  these light re- 
sponses were  blocked with 20  mM  6,7-dinitroquinoxaline-2,3- 
dione  (DNQX) and  L-AP4, and  ChR2-mediated spikes evoked 
at maximum irradiance (0.87 mW/cm2; Figure  4A). The activity 
maps show that only a subset of all RGCs responded to optoge- 
netic stimulation (Figure 4A, top and center). We found 375 units 
in that dataset with a firing rate of at least  0.5 Hz during photore- 
ceptor-driven light stimulation but  only 254  units  during  direct 
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Figure 3.  Waveform Correlations Demonstrate Improved Clustering for Combined Event Locations and Waveform Features 
All data are from the same experiment as in Figure 1, acquired at 24 kHz. 
(A) An example comparing the same unit obtained using spatial  clustering alone (with mixing coefficient a = 0) with clustering based on combined event locations 
and waveform features ða = 0:3Þ. Shown are event locations (left), example (thin lines) and average (thick lines) waveforms (center; scale bars, 0.2 ms and 100 mV), 
and normalized distributions of waveform correlations (right; dashed lines, a = 0; solid lines, a = 0:3). The selected unit is colored in blue (within), the nearest unit in 
orange, and the remaining events within a radius of 42mm of the target unit location in green (nearby spikes; these also include the spikes of the nearest unit). In this 
example, spatial  clustering is sufficient  to isolate  the blue unit. 
(B and  C) Same as (A), but illustrating two units that spatially  overlap  with their neighbors. 
(D) Median  AUC for all units,  quantifying  the overlap  between the normalized distributions of waveform correlations for each unit as  a function  of the mixing 
coefficient a. The comparison was  either done  with the spatially  closest unit (orange) or with all neighboring spikes (green). 
(E) Full distributions of AUC values  obtained from comparison with the nearest unit and  for different values  of a. 
(F) Same as (E), but taking all nearby spikes into account. 

	
stimulation of ChR2-expressing RGCs. In addition, 77 units were 
significantly less active during light stimulation than during ChR2 
stimulation,  presumably  reflecting   neurons  unresponsive  to 

photoreceptor  activation but  nevertheless  expressing  ChR2. 
The  responsiveness of each unit  to  ChR2  activation was  as- 
sessed by  determining the  correlation of  an  individual  unit’s 
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A B Figure  4.  Comparison  of   Optogenetically 
Evoked Spikes with  Anatomical Imaging 

(A)  Activity maps obtained during  photoreceptor 
stimulation (top) and ChR2-expressing RGC 
stimulation under  blockade of the glutamatergic 
pathway from  photoreceptors to  RGCs  (center). 
The bottom graph  shows the correlation of the 
activity of each unit with the  overall  ChR2-driven 
population activity, which quantifies the respon- 
siveness to optogenetic stimulation. 
(B) Alignment  of  neural  activity  with  a  confocal 
image.    Individual   spikes  are   shown  as   dots, 

D colored according to unit membership (note  that 
only  a  subset of  all  recorded  spikes is  shown 

C for clarity). Annotated somata are  highlighted  by 
circles and  the  unit’s centroids as  colored circles 
with areas proportional to the spike  rate. 
(C) A different  imaged area  with superimposed 
electrical images of four selected units.  Cluster 
centroids are indicated by red circles. 
(D) The  distribution of spatial  distances between 
each unit and  its closest soma is significantly 
different from randomness. The one-tailed Kol- 
mogorov-Smirnov test  shows incompatibility  with 
the    distribution   obtained   by    assuming   that 
somata and  units  are  unrelated (p = 0.001,  green 
line). When  the  units  are  separated into two  sets 

according to activity level (top) and population correlation (bottom), the effect is strongest for highly active/highly correlated units (blue), whereas weakly active/ 
correlated units are randomly distributed (yellow). The gray line indicates the threshold value for which the two sets have the same number of units. The data in 
these graphs summarize an imaged area  of 0.78 mm2. 

	
activity with the  overall population activity (Figure 4A, bottom). 
Almost  all  highly  active   units   during   ChR2   stimulation also 
showed higher correlation, with some exhibiting uncorrelated 
activity,  which  we  attribute to  intrinsic  spontaneous   activity 
that  could  not  be  blocked. Of all detected units,  about 40% 
had a correlation larger than 40%,  close to the expected fraction 
of Thy1-expressing RGCs. 

Next we co-localized the activity with confocal micrographs of 
labeled neurons (Figure 4B). We analyzed an area  of 0.78 mm2, 
where   195  somata were  manually  annotated, and  211  units 
were  detected. An example of the alignment of activity and 
anatomical image is shown in Figure 4B for activity obtained dur- 
ing photoreceptor  stimulation (left) and  ChR2  activation (right). 
All units  with significant  activity  during  ChR2  stimulation were 
closely  co-localized with a  labeled soma. Similarly, there  is a 
tight co-localization between the neurons and  electrical images 
generated from the raw traces (Figure 4C). 

To verify whether labeled somata and  localized  units  where 
significantly  close to each other,  we computed the  distance to 
the   closest soma for  every   unit.  If  units   and   somata  were 
randomly distributed, the  probability  of a distance r would  be 
2pnre-pnr2 , where  n is the  density of somata (Chandrasekhar, 
1943).  We compared the  distribution of 198  distances to  this 
null model  using  a  one-tailed  Kolmogorov-Smirnov test  (Fig- 
ure  4D), confirming  that  the  distances are  significantly  smaller 
than  predicted by the random model.  To account for the effect 
of spontaneous activity,  we  applied the  test  after  separating 
the units into two groups according to their activity level or pop- 
ulation correlation, varying the threshold that separates the two 
sets. The locations of the  less  active  and  less  correlated units 
are  compatible with a random distribution, whereas the  more 

active  and better correlated units are significantly closer  to their 
anatomical counterparts. 
	
Model-Based Validation and Quality Control 
As pointed out above, detection was  performed with a low 
threshold to minimize false negatives. Hence some units are ex- 
pected to  contain ambiguities the  clustering algorithm  cannot 
fully resolve. For instance, the localization  error is typically larger 
for spikes with small amplitudes (Muthmann et al., 2015); hence, 
it may not be possible to spatially  cluster these events reliably. 

To assess the cluster assignments’ quality and  automatically 
reject  poorly  separated units,  we  followed  an  approach pro- 
posed by Hill et al. (2011). Under the assumption that spike loca- 
tions and waveform features can be described by a multivariate 
normal  distribution, a comparison of the  clusters assignments 
with those predicted by a Gaussian mixture model  provides an 
estimate of the classification performance. Each unit was inves- 
tigated in turn, including all of its immediate neighbors, by fitting 
a six-dimensional Gaussian mixture  model  with the  number of 
components equal to the number of units (Experimental Proced- 
ures). We included four PCA dimensions to ensure that the model 
best exploits  all available  waveform features while ensuring reli- 
able convergence. To evaluate the relevance of spatial  locations 
and  waveform features for clustering, the model  was  also  fit to 
each of these features separately. 

The  model   comparison produces  a  confusion matrix  with 
the estimated number of false positives and  negatives for each 
unit, which is then  summarized into a single measure (F-score). 
Two typical outcomes of this procedure are illustrated in Figures 
5A and  5B for relatively crowded areas on the array.  Figure 5A 
shows a unit with a distinct  waveform (blue) and  four neighbors 
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A B Figure 5.  Quantitative Assessment of Sort- 
ing Quality with  Gaussian Mixture Models 
(A) A Gaussian mixture model (GMM) fit to a group 
of neighboring units.  All units  within a  radius  of 
42 mm around the unit colored blue were included 
in  the  model.   The  model   was   then  fit to  com- 
bined  spike  locations and  waveforms (X/Y+PCA), 
waveforms alone  (PCA), or locations alone  (X/Y). 
Spikes are  colored to indicate the  original cluster 
assignments. The numbers in each panel  are  the 
F-scores for each unit, indicating  the average 
number of false  positives and  negatives between 
the two assignments. Examples of spike  wave- 
forms  and  the  unit average (thick line) are  shown 
using the same color scheme. In this example, the 
unit colored in blue is well separated both spatially 
and  by waveform  features. 
(B) Same as  (A), but  illustrating  a  group  of units 

C F with  very  similar  waveforms, which  can  only  be 
separated using spike  locations. 
(C) Histogram of F-scores of all units  in one 
recording, computed as in (A) and  (B). 
(D) Relationship between F-scores evaluated from 
waveforms alone  and  the combined features. 
(E) Number  of units with an F-score > 0.95, evalu- 
ated from waveforms alone  for different  values  of 
the shape mixing parameter a. The best overlap  is 

D E obtained for a = 0.28,  the value used in the  other 
examples in this paper. 
(F) Spatial  distribution of F-scores for all units. 

	
	
	
	

	
	
	
	

within  one  electrode radius.   The  blue  unit  was   already   well 
isolated based  on  waveform features  alone  (PCA, F-score  = 
0.97) but  not  when  only spike  locations were  considered (X/Y, 
F-score = 0.68).  Combining locations and  waveforms did  not 
yield further improvement, although it helped to isolate  its 
neighbors based on their spike  locations. Figure 5B shows five 
spatially well separated units with smaller and very similar wave- 
forms.  Waveform-based clustering alone  gave  poor  results, but 
adding spike  locations improved it considerably. 

Figures  5C–5F summarizes the analysis performed on a 7.6- 
million spikes dataset. Each  of 2,234  units  with a spike  rate  of 
at least  0.3 Hz took, in turn, the role of the blue unit in Figure 5A, 
and all units within a radius of 42mm were combined into mixture 
models. When  location  and  waveform features were  used  for 
quality control,  55%  of the units  (1,230) had  an F-score > 0.95 
and  15%  (334 units) an  F-score > 0.99  (Figure 5C; X/Y+PCA). 
These fractions decreased  only  slightly  when  locations were 
used  on   their   own   but   substantially  for  waveforms  (PCA) 
alone. Comparing F-scores for waveforms or combined features 
shows that  adding locations improves fits in most  cases, but 
poor scores for waveforms also result in lower combined scores 
(Figure 5D). An inspection of the  waveform scores for different 
a values  shows an optimum for a = 0.28  (Figure 5E). A spatial 
overview  of these results showed that  units  with low F-scores 
are primarily found in crowded areas (Figure 5F). 

Functional Assessment of 
Single-Unit Activity 
We recorded RGC responses to full field 
flashes, allowing  us  to evaluate whether 

individual sorted units exhibit the typical On, Off, or On-Off light 
responses. Figures 6A and 6B show spike locations, spike wave- 
forms, raster plots, and peri-stimulus time histograms (PSTHs) of 
all units in a small retinal patch, demonstrating excellent separa- 
tion into fast  and  slow  On, Off, and  On-Off responses.  Impor- 
tantly,  immediately adjacent neurons generally  exhibit  different 
responses, as expected from the mosaic functional organization 
of RGCs. 

The fact that the majority of these units, even  those with very 
small waveforms, exhibit reliable light responses demonstrates 
that  the  signal  variance is mainly due  to physiological causes 
rather  than  electrical noise  (Muthmann et al., 2015). Units with 
well defined waveforms are typically also well separated in their 
PCA projections, whereas small waveforms are mainly clustered 
based on spatial  locations (compare units 1–3 with units 5–7 in 
Figure  6C). The cluster F-scores (shown  above the  waveforms 
in Figure  6B) are  lower for units  with small  waveforms; hence, 
further analysis for well isolated cells can  rely on this measure. 
	
Comparison with Conventional Spike Sorting 
Conventional spike  sorting  relies  on differences in spike  wave- 
forms.  To  evaluate how  our  approach scores in comparison 
with such  methods, we compared our method with the outcome 
of manually  curated spike  sorting  done  on each MEA channel 
separately.  Conventional spike   sorting   was   performed  using 
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Figure 6.  Functional Characterization of Spike-Sorted RGCs 
(A) Spatial  locations of individual spikes within a small area  on the MEA. Only a subset of spikes are shown for clarity. This area  contained 18 units,  and  unit 
membership is indicated by color. Spikes of units centered outside of the visible area  are shown as black  dots. Coordinates are in units of electrode distance 
(42mm). 
(B) Overview of the units highlighted in (A) using the same color scheme. Each panel shows example waveforms, the average spike waveform (black line), and the 
raster and PSTH for full field stimulation (2 s bright, 2 s dark; red lines indicate stimulus offset time). The unit number and cluster F-score are given above the spike 
waveforms. 
(C) Spikes in the circled  area  in (A), with identical  color coding, shown in the space of waveform principal components (PCA space). 
Shown  are the same data as in Figure 1 with an acquisition rate  of 24 kHz. 

	
	

T-distribution expectation-maximization  (E-M) clustering (Sho- 
ham  et al., 2003) followed by manual  inspection and  correction 
(Plexon Offline Sorter). 

The data used for this comparison were  recorded at 24 kHz 
with 1,024  electrodes (Figure 1) and  included 538 clusters with 
at  least   200  spikes each. For  each  cluster, we  located the 
most  similar sorted unit using  spike  count  cross-correlation 
following binning (each unit is typically found on multiple elec- 
trodes) and  obtained the  number of spikes in the  sorted  unit 
that were not part of the cluster (false negatives) and the number 
of spikes in the cluster not present in the sorted unit (false 
positives). As for the  mixture  model  above, we then  computed 
precision, recall, and  the F-score for each cluster (Experimental 
Procedures). 

Figure 7A illustrate  two common cases we encountered. The 
first example shows an almost identical  assignment for both 
methods that  we  found  in 96 clusters (18%),  with an  F-score 
larger than 0.95 (Figure 7B). Such  pairs  had very few false posi- 
tives and negatives (e.g., the pair in Figure 7A, top, had nine false 
negatives and  no false positives of 1,818  spikes). 

For many  of the  remaining  clusters, the  F-score was  domi- 
nated by a sizable fraction of false negatives, spikes in the sorted 

unit that  were  not  included in the  corresponding  cluster (units 
with low recall in Figure 7C). An inspection of the spatial locations 
of these events showed that false negatives were often located 
far  away  from  the  cluster centroid and  visually  appeared  to 
be  part  of another unit (Figure  7A, center and  bottom, orange 
events). Figure  7A, center and  bottom,  illustrates the  conse- 
quences of erroneous assignment by conventional spike sorting, 
changing On cells into On-Off cells by merging spikes from other 
nearby Off cells. 

We found  that  the  inclusion  of distant spikes happened 
frequently, with  an  average distance of  false  negatives  from 
the cluster centroid typically around 30 mm (Figure 7D). This 
suggested that they were wrongly included in a sorted unit based 
on waveform similarities.  To see  whether these failures  are 
associated with specific waveform features, we compared the 
F-scores with the  average projections of the  waveforms along 
their first principal  component (Figure 7E). The PC1  projection 
provides an indicator  of signal  quality for each unit (Figure 2B), 
and,  indeed, lower F-scores were  observed almost exclusively 
for  low-scoring units.  Hence, we  conclude that  conventional 
spike  sorting  only allows  reliably isolation  of units  with strong, 
very prominent waveform features, whereas smaller, less distinct 
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Figure 7.  Failure of Conventional Spike Sort- 
ing in Isolating Single Units 
(A)  Examples  of  three   units   clustered  with  our 
method compared with corresponding units ob- 
tained    from   conventional, spike-shape based 
sorting.  Raster plots  show  responses to  full field 
flashes (left; 2 s bright,  2 s dark),  principal 
component projections of all spikes found  in the 
area  within a radius  of 78 mm  around the  cluster 
center (center),  and  all spikes plotted at  their  lo- 
cations (right). Spikes colored green  were  found 
in both units, those in orange only in the sorted unit, 
and  those in blue only in the clustered unit. 
(B) Histograms of F-scores for the  comparison 
(blue) and for mixture model fits for the sorted units 
(orange). 
(C) Precision and  recall  for the  comparison,  illus- 
trating that low F-scores are primarily due to spikes 
missing  in the clustered unit (orange events in A). 
(D) Average  distance of spikes not included in the 
clustered unit, measured from the cluster centroid. 
(E) Comparison of F-scores with the average pro- 
jection  of the  waveforms along  the  first principal 
component, shown for the  comparison of sorting 
method (blue)  and  for  the  mixture  model  fits  of 
clustered units (orange). 
Shown  are the same data as in Figure 1. 

	
	

 
	

	
	

waveforms cannot be separated reliably on the exclusive basis 
of their shape. 
	

DISCUSSION 
	

Spike  sorting  is a  critical  step in the  analysis of extracellular 
electrophysiological recordings. An erroneous assignment of 
spikes can  have  severe consequences for the  interpretation of 
neural activity, which has  motivated the development of joint 
models of spike waveforms and neural activity to avoid spurious 
or  biased  correlation estimates  (Ventura  and   Gerkin,  2012). 
In high-density recordings, increasingly used  both  for in vitro 
and  in vivo studies, assigning spikes to  single  units  becomes 
exponentially complex as  a function  of the  number of events; 
hence, it requires approximate solutions. Moreover, the  sheer 
size of the data prevents detailed manual  inspection and quality 
control. 

Here  we  solve  this  task  by creating an  efficient,  low-dimen- 
sional  data representation, based  on  spatial   spike   locations 
and  the  most  prominent waveform features, that  can  be  clus- 
tered  efficiently.  We found  that  clustering in four dimensions, 
with two dimensions representing waveform features, was suffi- 
cient to achieve high performance, which we attribute to the fact 
that the signals reliably measured with a dense MEA mainly orig- 
inate from strong currents at the AIS of each neuron, with limited 
variability between neurons. This enables estimating their spatial 
origin but limits variability to support shape-based spike sorting. 
Comparison of optogenetically evoked spikes with anatomical 
images indicates that  detected spikes typically cluster near  the 
AIS and  that  localization  alone  is sufficiently precise to reliably 

isolate  some neurons even  without  using  additional waveform 
features. 

Out method could  be used with arrays  and  probes where  an 
event location estimate can be reliably obtained. The dimension- 
ality of the clustering step can then be adjusted to exploit higher 
waveform variability. The complexity of the clustering algorithm 
scales quadratic with the number of spikes, and the highly opti- 
mized version used here has  a better performance when promi- 
nent  spatial  clustering is present. We developed a parallelized 
implementation  that   allows   sorting   of  millions  of  spikes  in 
minutes (ten  million spikes take   about 8  min  on  a  12-core 
2.6-GHz  Xeon workstation). Together with a method for quality 
control,  this makes it possible to perform  parameter sweeps to 
identify the optimal parameters of the clustering algorithm.  Clus- 
tering  is  followed  by  an  automated assessment of clustering 
quality, allowing the automated rejection of poorly isolated units 
and  manual  inspection of borderline cases. We also  provide  a 
visualization  tool where  further annotation can  be performed. 

The  complete workflow  consists of event  detection, spatial 
localization,  clustering, quality control,  and,  finally, optional 
manual   inspection.  The  former   two  currently   constitute the 
main  bottleneck. Detection takes  about four  times  real  time 
and  scales linearly with recording duration. The complexity of 
the spike localization  scales linearly with the number of detected 
events and  runs  roughly in real time for recordings with normal 
spike   rates. For  both   methods,  parallelized implementations 
are under  development. 

Our work with high-density recordings has revealed significant 
limitations of purely shape-based spike  sorting  for MEA record- 
ings.  It is virtually impossible to  evaluate how  many  units  are 
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represented in a single electrode signal. If the electrode is posi- 
tioned  close to a neuronal cluster, one  or two units with strong 
signals usually have  sufficiently distinct  waveforms to be sepa- 
rable.  However, comparison with spike  locations showed that 
weaker signals arising  from  more  remote cells  are  generally 
not distinguishable based on shape alone.  We frequently  found 
cases where  spikes of neurons with entirely different physiolog- 
ical signatures were  mixed  by shape-based sorting,  a problem 

All preparations were performed under  dim red light, and the room was main- 
tained  in darkness throughout the experiment. 
	
Visual and Optogenetic Stimulation 
We used a  custom-made projection system to  deliver  visual  stimuli  to  the 
retina  (for details, see  Portelli et  al., 2016). Photoreceptor-driven responses 
were acquired at a maximum irradiance of 4mW/cm2 (neutral density (ND) filter 
4.5), low enough to avoid eliciting ChR2-driven responses in the ChR2 retinas. 
ChR2-driven responses were  elicited  using  the  broad RGB spectrum of the 

2 

that  cannot be avoided even  by careful  manual  inspection. Our projector with  a  maximum irradiance  of  0.87  mW/cm (ND 2.2)  following 

method, on the other hand, handles such  situations much better 
because spatial  location  estimates are sufficiently precise to 
disambiguate borderline cases.  Thus,  a  main  factor  affecting 
sorting  performance is the noise  and  bias in spatial  localization, 
both  depending on signal quality (Muthmann et al., 2015). 

A different  strategy, outlined  by Marre et al. (2012), is to esti- 
mate  spatio-temporal templates that  are  then  used to identify 
spikes from each neuron (Dragas  et  al., 2015).  This shifts  the 
computational burden from spatial  interpolation and  source 
localization  in our method to the  deconvolution of spikes from 
raw data. We found  that  adding shape criteria  at the detection 
stage could  lead  to false  negatives, suggesting that  templates 
can  only be reliably estimated for neurons with sufficiently high 
firing rates. A third  method, recently   developed by  Rossant 
et al. (2016) for high-density in vivo probes, reduces complexity 
by masking irrelevant  parts of the data based on geometric 
constraints before fitting  a  mixture  model  and  clustering the 
data. This avoids  an early discarding of potentially  useful  infor- 
mation,  which  our  method does by  using  signal  interpolation 
and  Marre et al. (2012) did by creating templates. On the other 
hand, although potentially  more precise, this method is compu- 
tationally  more  demanding and,  hence, more  suitable for data 
from hundreds of channels. 

EXPERIMENTAL PROCEDURES 

Electrophysiology 
Experimental procedures were  approved and  carried  out in accordance with 
the guidance provided by the United Kingdom Home Office, Animals (Scienti- 
fic Procedures) Act  1986  (Retinal  Recordings), by  the  institutional   Istituto 
Italiano  di Tecnologia (IIT)  Ethic  Committee, and  by  the  Italian  Ministry of 
Health  and  Animal Care  (Authorization  ID 227,  Prot.  4127  March  25,  2008) 
(neural cultures; Panas et al., 2015). 

Experiments  on   the   retina   were   performed  on   adult   wild-type   mice 
(C57BL/6, aged post-natal days  [P] 27–39) or on B6.Cg-Tg(Thy1-COP4/ 
EYFP)9Gfng/J  mice (Thy1-ChR2-YFP;  The Jackson Laboratory; RRID:IMSR_ 
JAX:007615) aged P69–96.  Recordings from the  RGC layer were  performed 
using  the  BioCam4096 platform  with active  pixel  sensor (APS) MEA chips 
(type   BioChip   4096S,  3Brain),   providing   4,096   square  microelectrodes 
(21mm 3 21mm) on an active  area  of 2.67 mm 3 2.67 mm, aligned  in a square 
grid with 42 mm spacing. The platform  records at  a sampling rate  of about 
7 kHz/electrode when  measuring from the  full 64 3 64 MEA, but  sampling 
increases to 24 kHz when  recording from 1,024  electrodes. Raw data were 
visualized   and  recorded with  the  3Brain  proprietary BrainWave   software. 
Activity was  recorded at 12-bit  resolution per  electrode, low pass-filtered at 
5 kHz with the on-chip filter, and  high pass-filtered by setting the digital high 
pass filter of the platform  at 0.1 Hz. 

Mice were killed by cervical dislocation and enucleated prior to retinal isola- 
tion. The isolated retina  was  placed, RGC layer facing  down,  onto  the  MEA 
(for details, see  Maccione et al., 2014). The retina was  continuously perfused 
with artificial cerebrospinal fluid (maintained at 32o C) containing the following: 
118 mM NaCl, 25 mM NaHCO3, 1 mM NaH2 PO4, 3 mM KCl, 1 mM MgCl2, 
2 mM CaCl2, and  10 mM glucose, equilibrated with 95%  O2  and  5%  CO2. 

blockade  of  photoreceptor-driven responses  by  increasing  [MgCl2]out    to 
2.5 mM and by decreasing [CaCl2]out  to 0.5 mM (to reduce synaptic transmis- 
sion) and in the presence of 20mm DNQX and 20mm L-AP4 (Tocris Bioscience) 
to block  glutamatergic neurotransmission in the  photoreceptor-bipolar  cell- 
RGC pathway. Responses to repetitive (303)  full field stimuli (0.5 Hz) were 
analyzed as shown in Figures  6 and  7. 
	
Spike Detection, Localization, and Selection 
The procedures for spike  detection and  localization  are  described in detail 
elsewhere (Muthmann et al., 2015). Weighted interpolated signals were gener- 
ated using two spatial  templates to capture both spikes originating close to or 
between electrodes. The running baseline and noise estimate were computed 
as  signal percentiles, and  putative spikes were  detected as  threshold cross- 
ings.  This procedure ensures detection of temporally overlapping spikes as 
long as they leave a distinct spatial  footprint. Next, source locations were esti- 
mated for each event by considering the spatial signal spread over neighboring 
electrodes. The signals were  baseline-subtracted and  inverted, and  then  the 
median signal  was  subtracted to minimize bias  because of noise.  The signal 
was clipped to positive values, and the center of mass was determined. To fil- 
ter out noise  and  poorly detected neurons in recordings at 7 kHz, we devel- 
oped an automated post  hoc  event  rejection. To this end,  noise  events were 
sampled from areas on the MEA where  no activity was  recorded, such  as  at 
incisions  or uncovered areas (identifiable  by low spike  counts). Up to 1,000 
of such  events and up to 1,000 events with large amplitudes were used to train 
a support vector  machine with radial  basis functions. This model  was  then 
used to classify  events as true spikes or noise  (Figure S1). 
	
Spike Clustering 
Data points were clustered using an implementation of the mean shift algorithm 
(Comaniciu and Meer, 2002), available  in the scikit-learn open  source machine 
learning  library (Pedregosa et al., 2011). Importantly, this algorithm  does not 
require prior knowledge of the desired number of clusters. It depends on a sin- 
gle parameter, the bandwidth h, which determines the expected cluster size, 
which, in turn, can be estimated from a typical spatial  cluster size in an activity 
plot (Figure 1B) and was here set to 12.6 mm (the average width of clusters). The 
clustering process was  run on a four-dimensional space consisting of two di- 
mensions, indicating  the location  of each event  on the chip, x and  y, and  two 
dimensions representing the first two principal  components of the event’s 
waveform. The latter  were  multiplied  by an  additional dimensional constant 
a that  tuned the relative importance of the waveform components compared 
with the  spatial  coordinates. To parallelize  this  algorithm,  we  exploited the 
fact that all points follow a local density gradient until they converge to a local 
maximum, the center of a cluster. Because every data point does so indepen- 
dently of the others, this process is run in parallel, which improved performance 
roughly  proportionally to  the  number of available   central   processing  units 
(CPUs). The relevant code has been merged into the scikit-learn Python library. 
	
Quality Metric 
Following Hill et al. (2011), we fitted a multivariate Gaussian mixture model to a 
set of N clusters and then estimated their overlap  using posterior probabilities 
to obtain  the probability  of incorrect assignments under  the assumption of a 
Gaussian cluster shape. The model is fit in six dimensions, with the two spatial 
coordinates and  the projections of the spike  waveform along the first four 
principal components. For each cluster, we assume that only spikes in nearby 
clusters interfere  with the  sorting.  Therefore, all clusters or spikes within a 
radius of 42 mm (electrode pitch) are included in the model. To obtain meaning- 
ful fits for sets of clusters with very disparate number of spikes, a Gaussian is fit 
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to each cluster individually before combining them  into a mixture model.  The 
assignment quality is evaluated as follows. Let the probability of spike s in clus- 
ter c be PðC = c  j S = sÞ: the estimated fraction of spikes in cluster k that could 
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Correspondingly,  the  number of  false  negatives, the  fraction  of  spikes in 
cluster c  that  was  expected to  be  assigned to  other  (i.e., wrong)  clusters, 
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Confocal Imaging and Image Analysis 
To achieve a precise alignment of RGCs with recording electrodes, the retina 
had to be imaged on a chip with photoreceptors facing upward. The retina was 
fixed with 4% paraformaldehyde (in 0.1 M PBS and  200 mM sucrose) on the 
MEA chip for 1 hr after recording. We have  determined that tissue shrinkage, 
which may interfere  with activity alignment, is negligible for this protocol. The 
retina  was  rinsed  several times  with 0.1 M PBS,  embedded with Vectashield 
(Vector Laboratories), and  sealed with a coverslip (Menzel Glaeser). Imaging 
was  performed with a Leica SP5  confocal upright  microscope supplied with 
a 253/0.95 numerical aperture (NA) working distance (WD) 2.5 mm water  im- 
mersion objective for optimal signal collection focusing on areas encompass- 
ing 8 3 8 electrodes (300 3 300mm field of view). In each field, images (2,048 3 
2,048  pixels)  were  acquired in z stacks in tissue thickness of 60–100  mm 
(optical  slicing  yielding 30–50  image  planes). A lateral  resolution of 200  nm 
per pixel, just above the diffraction limit, and optical slicing of 550 nm provided 
an adequate trade-off between sufficient  image  details  and  acquisition time, 
minimizing the risk of photo  damage. For image  restoration, the Richardson- 
Lucy method (Lucy, 1974; Richardson, 1972) was used. In addition  to the fluo- 
rescence signals in specific fields, large-field  images, including images of the 
MEA, were  acquired to  enable co-localization of images with RGC  spiking 
activity. 

In one  Thy1 YFP-ChR2  retina,  RGC  somata were  manually  annotated in 
selected subfields where  activity was  recorded, and  the  confocal images of 
the RGC layer were spatially aligned  with the estimated locations of detected 
events. To this  end,  the  active  area  of one  electrode was  determined, and 
the  remaining  electrode locations were  computed, generating a regular  grid 
using  42 mm electrode spacing. The images and  soma locations were  then 
transformed into  array  coordinates, and  spike  locations were  overlaid  with 
the retinal image. 
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