156 research outputs found

    A Short Non-Saline Sprinkling Increases the Tuber Weights of Saline Sprinkler Irrigated Potatoes

    Get PDF
    © 2017 by the authors; licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC-BY) license (http://creativecommons.org/licenses/by/4.0/).Previous work has shown that a short non-saline sprinkling, following saline sprinkling, increased crop growth. We incorporated this finding into an investigation of two approaches to the conjunctive use of saline and non-saline water sources for sprinkler irrigation of potatoes viz., (i) mixing waters prior to application, and (ii) keeping waters temporally separate, that is commencing each irrigation with saline water and finishing it with non-saline sprinkling. The latter approach delayed canopy senescence and increased tuber weight by at least 150%. Under both approaches, soil salinities and leaf and tuber concentrations of Na+ and Cl− were similar. Thus, the advantages of a non-saline sprinkling cannot be explained in terms of its effect on either soil osmotic potential or bulk tissue concentrations of putatively toxic ions Na+ and Cl−. We propose that the positive effect of finishing irrigations with a non-saline sprinkling may be attributed to either dilution, and hence increase in osmotic potential, of the water film that remains on the leaf after each irrigation or its effect on the distribution of the putatively toxic ions Na+ and Cl− within tissue. View Full-Tex

    Inventing the Neolithic? Putting evidence-based interpretation back into the study of faunal remains from causewayed enclosures.

    Get PDF
    ArticleThis is an Accepted Manuscript of an article published by Taylor & Francis in World Archaeology on 2015, available online: http://wwww.tandfonline.com/10.1080/00438243.2015.1072476The paper argues that our current understanding of the animal bones from causewayed enclosure sites in Britain is flawed. During the 1980-90s, a number of key interpretations, still frequently espoused, were based more upon anecdote and theory-driven assertion than on empirical evidence. An example is that evidence of bone processing (butchery and bone fracture) does not feature heavily in the faunal record from causewayed enclosures. Using data from the sites of Etton and Staines, this view must now be questioned. Both butchery and peri-mortem bone fracture are present in these assemblages in substantial quantities. These sites are compared with Ludwinowo 7, a Linearbandkeramik settlement site in Poland and there are considerable similarities between the three different sites. This suggests possibility that the broader economic utility of animal bone assemblages at causewayed enclosures has been underestimated, having been, up to now, regarded as ‘not indicative of domestic settlement’

    The genome landscape of indigenous African cattle

    Get PDF
    Background: The history of African indigenous cattle and their adaptation to environmental and human selection pressure is at the root of their remarkable diversity. Characterization of this diversity is an essential step towards understanding the genomic basis of productivity and adaptation to survival under African farming systems. Results: We analyze patterns of African cattle genetic variation by sequencing 48 genomes from five indigenous populations and comparing them to the genomes of 53 commercial taurine breeds. We find the highest genetic diversity among African zebu and sanga cattle. Our search for genomic regions under selection reveals signatures of selection for environmental adaptive traits. In particular, we identify signatures of selection including genes and/ or pathways controlling anemia and feeding behavior in the trypanotolerant N’Dama, coat color and horn development in Ankole, and heat tolerance and tick resistance across African cattle especially in zebu breeds. Conclusions: Our findings unravel at the genome-wide level, the unique adaptive diversity of African cattle while emphasizing the opportunities for sustainable improvement of livestock productivity on the continent

    Whole genome scan reveals the genetic signature of African Ankole cattle breed and potential for higher quality beef

    Get PDF
    BACKGROUND: Africa is home to numerous cattle breeds whose diversity has been shaped by subtle combinations of human and natural selection. African Sanga cattle are an intermediate type of cattle resulting from interbreeding between Bos taurus and Bos indicus subspecies. Recently, research has asserted the potential of Sanga breeds for commercial beef production with better meat quality as compared to Bos indicus breeds. Here, we identified meat quality related gene regions that are positively selected in Ankole (Sanga) cattle breeds as compared to indicus (Boran, Ogaden, and Kenana) breeds using cross-population (XP-EHH and XP-CLR) statistical methods. RESULTS: We identified 238 (XP-EHH) and 213 (XP-CLR) positively selected genes, of which 97 were detected from both statistics. Among the genes obtained, we primarily reported those involved in different biological process and pathways associated with meat quality traits. Genes (CAPZB, COL9A2, PDGFRA, MAP3K5, ZNF410, and PKM2) involved in muscle structure and metabolism affect meat tenderness. Genes (PLA2G2A, PARK2, ZNF410, MAP2K3, PLCD3, PLCD1, and ROCK1) related to intramuscular fat (IMF) are involved in adipose metabolism and adipogenesis. MB and SLC48A1 affect meat color. In addition, we identified genes (TIMP2, PKM2, PRKG1, MAP3K5, and ATP8A1) related to feeding efficiency. Among the enriched Gene Ontology Biological Process (GO BP) terms, actin cytoskeleton organization, actin filament-based process, and protein ubiquitination are associated with meat tenderness whereas cellular component organization, negative regulation of actin filament depolymerization and negative regulation of protein complex disassembly are involved in adipocyte regulation. The MAPK pathway is responsible for cell proliferation and plays an important role in hyperplastic growth, which has a positive effect on meat tenderness. CONCLUSION: Results revealed several candidate genes positively selected in Ankole cattle in relation to meat quality characteristics. The genes identified are involved in muscle structure and metabolism, and adipose metabolism and adipogenesis. These genes help in the understanding of the biological mechanisms controlling beef quality characteristics in African Ankole cattle. These results provide a basis for further research on the genomic characteristics of Ankole and other Sanga cattle breeds for quality beef. ELECTRONIC SUPPLEMENTARY MATERIAL: The online version of this article (doi:10.1186/s12863-016-0467-1) contains supplementary material, which is available to authorized users

    Being Mesolithic in life and death

    Get PDF
    Fifty years ago approaches to Mesolithic identity were limited to ideas of man the hunter, woman the gatherer, and evidence of non-normative practice was ascribed to "shamans" and to "ritual", and that was that. As post-processual critiques have touched Mesolithic studies, however, this has changed. In the first decade of the 21st century a strong body of work on Mesolithic identity in life, as well as death, has enabled us to think beyond modern western categories to interpret identity in the Mesolithic. Our paper reviews these changing approaches, offering a series of case studies of such approaches, before developing these case studies to advocate an assemblage approach to identity in the Mesolithic

    The bear in Eurasian plant names: Motivations and models

    Get PDF
    Ethnolinguistic studies are important for understanding an ethnic group's ideas on the world, expressed in its language. Comparing corresponding aspects of such knowledge might help clarify problems of origin for certain concepts and words, e.g. whether they form common heritage, have an independent origin, are borrowings, or calques. The current study was conducted on the material in Slavonic, Baltic, Germanic, Romance, Finno-Ugrian, Turkic and Albanian languages. The bear was chosen as being a large, dangerous animal, important in traditional culture, whose name is widely reflected in folk plant names. The phytonyms for comparison were mostly obtained from dictionaries and other publications, and supplemented with data from databases, the co-authors' field data, and archival sources (dialect and folklore materials). More than 1200 phytonym use records (combinations of a local name and a meaning) for 364 plant and fungal taxa were recorded to help find out the reasoning behind bear-nomination in various languages, as well as differences and similarities between the patterns among them. Among the most common taxa with bear-related phytonyms were Arctostaphylos uva-ursi (L.) Spreng., Heracleum sphondylium L., Acanthus mollis L., and Allium ursinum L., with Latin loan translation contributing a high proportion of the phytonyms. Some plants have many and various bear-related phytonyms, while others have only one or two bear names. Features like form and/or surface generated the richest pool of names, while such features as colour seemed to provoke rather few associations with bears. The unevenness of bear phytonyms in the chosen languages was not related to the size of the language nor the present occurence of the Brown Bear in the region. However, this may, at least to certain extent, be related to the amount of the historical ethnolinguistic research done on the selected languages

    ATLAS detector and physics performance: Technical Design Report, 1

    Get PDF
    corecore