383 research outputs found

    Partition function of the trigonometric SOS model with reflecting end

    Full text link
    We compute the partition function of the trigonometric SOS model with one reflecting end and domain wall type boundary conditions. We show that in this case, instead of a sum of determinants obtained by Rosengren for the SOS model on a square lattice without reflection, the partition function can be represented as a single Izergin determinant. This result is crucial for the study of the Bethe vectors of the spin chains with non-diagonal boundary terms.Comment: 13 pages, improved versio

    Opportunistic linked data querying through approximate membership metadata

    Get PDF
    Between URI dereferencing and the SPARQL protocol lies a largely unexplored axis of possible interfaces to Linked Data, each with its own combination of trade-offs. One of these interfaces is Triple Pattern Fragments, which allows clients to execute SPARQL queries against low-cost servers, at the cost of higher bandwidth. Increasing a client's efficiency means lowering the number of requests, which can among others be achieved through additional metadata in responses. We noted that typical SPARQL query evaluations against Triple Pattern Fragments require a significant portion of membership subqueries, which check the presence of a specific triple, rather than a variable pattern. This paper studies the impact of providing approximate membership functions, i.e., Bloom filters and Golomb-coded sets, as extra metadata. In addition to reducing HTTP requests, such functions allow to achieve full result recall earlier when temporarily allowing lower precision. Half of the tested queries from a WatDiv benchmark test set could be executed with up to a third fewer HTTP requests with only marginally higher server cost. Query times, however, did not improve, likely due to slower metadata generation and transfer. This indicates that approximate membership functions can partly improve the client-side query process with minimal impact on the server and its interface

    A transient network of telechelic polymers and microspheres : structure and rheology

    Full text link
    We study the structure and dynamics of a transient network composed of droplets of microemulsion connected by telechelic polymers. The polymer induces a bridging attraction between droplets without changing their shape. A viscoelastic behaviour is induced in the initially liquid solution, characterised in the linear regime by a stretched exponential stress relaxation. We analyse this relaxation in the light of classical theories of transient networks. The role of the elastic reorganisations in the deformed network is emphasized. In the non linear regime, a fast relaxation dynamics is followed by a second one having the same rate as in the linear regime. This behaviour, under step strain experiments, should induce a non monotonic behaviour in the elastic component of the stress under constant shear rate. However, we obtain in this case a singularity in the flow curve very different from the one observed in other systems, that we interpret in terms of fracture behaviour.Comment: 9 pages, 4 figure

    Drinfeld twist and symmetric Bethe vectors of the open XYZ chain with non-diagonal boundary terms

    Full text link
    With the help of the Drinfeld twist or factorizing F-matrix for the eight-vertex solid-on-solid (SOS) model, we find that in the F-basis provided by the twist the two sets of pseudo-particle creation operators simultaneously take completely symmetric and polarization free form. This allows us to obtain the explicit and completely symmetric expressions of the two sets of Bethe states of the model.Comment: Latex file, 25 page

    Polychronous Interpretation of Synoptic, a Domain Specific Modeling Language for Embedded Flight-Software

    Get PDF
    The SPaCIFY project, which aims at bringing advances in MDE to the satellite flight software industry, advocates a top-down approach built on a domain-specific modeling language named Synoptic. In line with previous approaches to real-time modeling such as Statecharts and Simulink, Synoptic features hierarchical decomposition of application and control modules in synchronous block diagrams and state machines. Its semantics is described in the polychronous model of computation, which is that of the synchronous language Signal.Comment: Workshop on Formal Methods for Aerospace (FMA 2009

    Entropic phase separation of linked beads

    Full text link
    We study theoretically a model system of a transient network of microemulsion droplets connected by telechelic polymers and explain recent experimental findings. Despite the absence of any specific interactions between either the droplets or polymer chains, we predict that as the number of polymers per drop is increased, the system undergoes a first order phase separation into a dense, highly connected phase, in equilibrium with dilute droplets, decorated by polymer loops. The phase transition is purely entropic and is driven by the interplay between the translational entropy of the drops and the configurational entropy of the polymer connections between them. Because it is dominated by entropic effects, the phase separation mechanism of the system is extremely robust and does not depend on the particlular physical realization of the network. The discussed model applies as well to other polymer linked particle aggregates, such as nano-particles connected with short DNA linkers

    Structure and rheological properties of model microemulsion networks filled with nanoparticles

    Get PDF
    Model microemulsion networks of oil droplets stabilized by non ionic surfactant and telechelic polymer C18-PEO(10k)-C18 have been studied for two droplet-to-polymer size ratios. The rheological properties of the networks have been measured as a function of network connectivity and can be described in terms of simple percolation laws. The network structure has been characterised by Small Angle Neutron Scattering. A Reverse Monte Carlo approach is used to demonstrate the interplay of attraction and repulsion induced by the copolymer. These model networks are then used as matrix for the incorporation of silica nanoparticles (R=10nm), individual dispersion being checked by scattering. A strong impact on the rheological properties is found for silica volume fractions up to 9%

    Non-diagonal open spin-1/2 XXZ quantum chains by separation of variables: Complete spectrum and matrix elements of some quasi-local operators

    Full text link
    The integrable quantum models, associated to the transfer matrices of the 6-vertex reflection algebra for spin 1/2 representations, are studied in this paper. In the framework of Sklyanin's quantum separation of variables (SOV), we provide the complete characterization of the eigenvalues and eigenstates of the transfer matrix and the proof of the simplicity of the transfer matrix spectrum. Moreover, we use these integrable quantum models as further key examples for which to develop a method in the SOV framework to compute matrix elements of local operators. This method has been introduced first in [1] and then used also in [2], it is based on the resolution of the quantum inverse problem (i.e. the reconstruction of all local operators in terms of the quantum separate variables) plus the computation of the action of separate covectors on separate vectors. In particular, for these integrable quantum models, which in the homogeneous limit reproduce the open spin-1/2 XXZ quantum chains with non-diagonal boundary conditions, we have obtained the SOV-reconstructions for a class of quasi-local operators and determinant formulae for the covector-vector actions. As consequence of these findings we provide one determinant formulae for the matrix elements of this class of reconstructed quasi-local operators on transfer matrix eigenstates.Comment: 40 pages. Minor modifications in the text and some notations and some more reference adde

    Hydrodynamics and Heat Transfer in Two and Three-dimensional Minichannels

    Get PDF
    Our study deals with the characterization of the flow and related heat transfer in a smooth, circular minichannel. A duct with a sudden (sharp-edged) contraction is also considered. Prediction of the pressure loss coefficient in this case is obtained via the commercial code CFX 5.7.1. This code is based on the finite volume method for the solution of the Navier-Stokes and offers several turbulences models (in this study we use the shear stress turbulence model - SST). The numerical results are compared with experimental results obtained for a configuration similar to those considered in the numerical study. The numerical algorithm is also validated by comparison with [Reynaud, Debray, Franc, and Maitre (2005); Guo, Wang, Yu, Fang, Chongfang, and Zhuo (2010)]. A good agreement is obtained with the exception of the transition zone between laminar and turbulent regime. In the case of duct sudden contraction, the numerical results show that the abrupt contraction coefficient Kc decreases with the Reynolds number, and it is much higher than that of conventional tubes in laminar flow when the diameter D is less than 1mm
    corecore